329
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier

, , , , , , , & show all
Pages 617-622 | Received 22 Jul 2013, Accepted 29 Jan 2014, Published online: 24 Feb 2014

References

  • Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471–6
  • Ruben S, Perkins A, Purcell R, et al. Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 1989;63:1–8
  • Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994;91:664–8
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;272:16010–17
  • Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001;276:5836–40
  • Yuan Y, Jae SE, Mi-Kyung L, Seung-Yong S. Synthesis and characterization of G5 PAMAM dendrimer containing daunorubicin for targeting cancer cells. Arch Pharm Res 2012;35:343–9
  • Galeazzi S, Hermans TM, Paolino M, et al. Multivalent supramolecular dendrimer-based drugs. Biomacromolecules 2010;11:182–6
  • Hu J, Fang M, Cheng Y, et al. Host-guest chemistry of dendrimer-drug complexes. 4. An in depth look into the binding/encapsulation of guanosine monophosphate by dendrimers. J Phys Chem B 2010;114:7148–57
  • Jang SH, Choi SJ, Oh JH, et al. Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer. Drug Dev Ind Pharm 2011;37:41–6
  • Klajnert B, Bryszewska M. Dendrimers as delivery systems in gene therapy. In: Valon CL, ed. New developments in mutation research, Chapter 9. New York: Nova; 2007:217–40
  • Lee CC, Mackay JA, Frechet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotech 2005;23:1517–26
  • Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis polyamidoamine dendrimers having poly(ethylene glycol) grafts and stability to encapsulate anticancer drugs. Bioconjugate Chem 2000;11:910–17
  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001;6:427–36
  • Hawker CJ, Wooley KL, Fréchet JMJ. Unimolecular micells and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin Trans 1 1993:1287–97
  • Twyman LJ, Beezer AE, Esfand R, et al. The synthesis of water soluble dendrimers and their application as possible drug delivery systems. Tetrahedron Lett 1999;40:1743–6
  • Yan C, Chen D, Gu J, Qin J. Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) for cancer chemotherapy: preparation, characterization – in-vitro drug release and anti-tumour activity. J Pharm Pharmacol 2006;58:1177–81
  • Kusumoto H, Maehara Y, Anai H, et al. Potentiation of adriamycin cytotoxicity by dipyridamole against HeLa cells in vitro and sarcoma 180 cells in vivo. Cancer Res 1988;48:1208–12
  • Kato Y, Onishi H, Machida Y. Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer. Biomaterials 2000;21:1579–85
  • Woo BH, Lee JT, Park MO, et al. Stability and cytotoxicity of fabricin A immunotoxins prepared with water soluble long chain heterobifunctional crosslinking agents. Arch Pharm Res 1999;22:459–63
  • Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharm Sci 2000;21:99–103
  • Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998;4:1449–52
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999;285:1569–72
  • Tomalia DA. Dendrimer molecules. Sci Am 1995;272:62–6
  • Emanuele AD, Attwood D, Abu-Rmaileh R. Dendrimers of pharmaceutical technology. New York: Marcel Dekker; 2002:1–21
  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001;6:427–36
  • Yoo H, Sazani P, Juliano RL. PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharm Res 1999;16:1799–804
  • Hussain M, Shchepinov M, Sohail M, et al. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J Control Release 2004;99:139–55
  • Yoo H, Juliano RL. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 2000;28:4225–31
  • Astriab-Fisher A, Sergueev DS, Fisher M, et al. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem Pharmacol 2000;60:83–90
  • Juliano RL. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr Opin Mol Ther 2005;7:132–6
  • Moulton HM, Nelson MH, Hatlevig SA, et al. Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 2004;15:290–9
  • Pooga M, Soomets U, Hällbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 1998;16:857–61
  • Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 1996;30:53–65
  • Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 2000;65:133–48
  • Kitchens KM, Foraker AB, Kolhatkar RB, et al. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm Res 2007;24:2138–45
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283–318
  • Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995;55:3752–6
  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998;95:4607–12
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008;26:57–64
  • Moghimi SM. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres: the effect of the ethylene oxide chain configuration. FEBS Lett 2003;540:241–4
  • Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 1987;3:233–361

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.