265
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Use of DMPC and DSPC lipids for verapamil and naproxen permeability studies by PAMPA

, &
Pages 658-662 | Received 07 Oct 2013, Accepted 04 Feb 2014, Published online: 26 Feb 2014

References

  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 1998;41:1007–10
  • Balimane PV, Pace E, Chong S, et al. A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J Pharm Biomed Anal 2005;39:8–16
  • Fujikawa M, Ano R, Nakao K, et al. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem 2005;13:4721–32
  • Sugano K, Hamada H, Machida M, et al. Optimized conditions of bio-mimetic artificial membrane permeation assay. Int J Pharm 2001;228:181–8
  • Sugano K, Nabuchi Y, Machida M, Aso Y. Prediction of human intestinal permeability using artificial membrane permeability. Int J Pharm 2003;257:245–51
  • Kerns EH, Di L, Petusky S, et al. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci 2004;93:1440–53
  • Bermejo M, Avdeef A, Ruiz A, et al. PAMPA—a drug absorption in vitro model: 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur J Pharm Sci 2004;21:429–41
  • Liu H, Sabus C, Carter GT, et al. In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm Res 2003;20:1820–6
  • Flaten GE, Dhanikula AB, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci 2006;27:80–90
  • Avdeef A, Bendels S, Di L, et al. PAMPA—critical factors for better predictions of absorption. J Pharm Sci 2007;96:2893–909
  • Avdeef A, Tsinman O. PAMPA—a drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA models. Eur J Pharm Sci 2006;28:43–50
  • Teksin Z, Seo P, Polli J. Comparison of drug permeabilities and BCS classification: three lipid-component PAMPA system method versus caco-2 monolayers. AAPS J 2010;12:238–41
  • Leidy C, Wolkers WF, Jørgensen K, et al. Lateral organization and domain formation in a two component lipid membrane system. Biophys J 2001;80:1819–28
  • Vaz WL, Melo EC, Thompson TE. Translational diffusion and fluid domain connectivity in a two-component, two phase phospholipid bilayer. Biophys J 1989;56:869–76
  • Sankaram MB, Marsh D, Thompson TE. Determination of fluid and gel domain sizes in two-component, two-phase lipid bilayers. An electron spin resonance spin label study. Biophys J 1992;63:340–9
  • Sugár IP, Thompson TE, Biltonen RL. Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. Biophys J 1999;76: 2099–110
  • Bagatolli LA, Gratton E. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 2000;79:434–47
  • Nielsen LK, Vishnyakov A, Jørgensen K, et al. Nanometre-scale structure of fluid lipid membranes. J Phys Condens Matter 2000;12:A309
  • Shimshick EJ, McConnell HM. Lateral phase separation in phospholipid membranes. Biochemistry 1973;12:2351–60
  • Foster MC, Yguerabide J. Partition of a fluorescentmolecule between liquid-crystalline and crystalline regions of membranes. J Membr Biol 1979;45:125–46
  • Silvius JR, del Giudice D, Lafleur M. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 1996;35:15198–208
  • Ipsen JH, Karlstrom G, Mouritsen OG, et al. Phase equilibria in the phosphatidylcholine–cholesterol system. Biochim Biophys Acta 1987;905:162–72
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 1997;36:10944–53
  • Matsuoka S, Murata M. Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B. Biochim Biophys Acta 2002;1564:429–34
  • Barenholz Y. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog Lipid Res 2002;41:1–5
  • Alvarez-Figueroa MJ, Araya-Silva I, Díaz-Tobar C. Iontophoretic transdermal delivery of haloperidol. Pharm Dev Technol 2006;11:371–5
  • Alvarez-Figueroa MJ, Pessoa-Mahana CD, González-Bustamante DA. Influence of lipophilia and of the vehicle used in the transdermal absorption of novel benzimidazole compounds with possible anti-HIV activity. Pharm Dev Technol 2008;13:127–33
  • Ruell JA, Tsinman KL, Avdeef A. PAMPA—a drug absorption in vitro model: 5. Unstirred water layer in iso-pH mapping assays and pKaflux—optimized design (pOD-PAMPA). Eur J Pharm Sci 2003;20:393–402
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26
  • Fischer H, Kansy M, Avdeef A, Senner F. Permeation of permanently positive charged molecules through artificial membranes—influence of physico-chemical properties. Eur J Pharm Sci 2007;31:32–42
  • Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev 2004;56:1437–52
  • Fiorini R, Gratton E, Curatola G. Effect of cholesterol on membrane microheterogeneity: a study using 1,6-diphenyl-1,3,5-hexatriene fluorescence lifetime distributions. Biochim Biophys Acta 1989;1006:198–202
  • Virtanen J, Ruonala M, Vauhkonen M, Somerharju P. Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry 1995;34:11568–81
  • Chong PL. Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proc Natl Acad Sci USA 1994;91:10069–73
  • Soto-Arriaza MA, Olivares-Ortega C, Quina FH, et al. Effect of cholesterol content on the structural and dynamic membrane properties of DMPC/DSPC large unilamellar bilayers. Biochim Biophys Acta 2013;1828:2763–9
  • Aguilar LF, Pino JA, Soto-Arriaza MA, et al. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes. PLoS one 2012;7:e40254
  • Moffat AC, Osselton MD, Widdop B, Clarke EGC. Clarke’s analysis of drugs and poisons. Pharmaceutical Press; 2004
  • Alvarez-Figueroa MJ, Pessoa-Mahana CD, Palavecino-González ME, et al. Evaluation of the membrane permeability (PAMPA and skin) of benzimidazoles with potential cannabinoid activity and their relation with the Biopharmaceutics Classification System (BCS). AAPS PharmSciTech 2011;12:573–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.