621
Views
62
CrossRef citations to date
0
Altmetric
Research Article

Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity

, , , , &
Pages 1888-1901 | Received 12 Nov 2014, Accepted 26 Jan 2015, Published online: 04 Mar 2015

References

  • Navia MA, Fitzgerald PM, McKeever BM, et al. Three-dimensional structure of the aspartyl protease from human immunodeficiency virus HIV-1. Nature 1989;337:615–20
  • Ikezoe T, Daar ES, Hisatake J, et al. HIV-1 protease inhibitors decrease proliferation and induce differentiation of human myelocytic leukemia cells. Blood 2000;96:3553–9
  • Pati S, Pelser CB, Dufraine J, et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 2002;99:3771–9
  • Sgadari C, Barillari G, Toschi E, et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 2002;8:225–32
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–59
  • Jain S, Kesharwani P, Tekade RK, Jain NK. One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Dev Ind Pharm 2014. [Epub ahead of print]. DOI: 10.3109/03639045.2014.900077
  • Gupta U, Dwivedi SK, Bid HK, et al. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm 2010;393:185–96
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomed Nanotech Biol Med 2011;7:295–304
  • Kesharwani P, Tekade RK, Jain NK. Dendrimer generational nomenclature: the need to harmonize. 2015. [Epub ahead of print]. doi:10.1016/j.drudis.2014.12.015
  • Niu X, Zou W, Liu C, et al. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Drug Dev Ind Pharm 2009;35:1375–83
  • Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471–6
  • Kesarwani P, Jain K, Tekade RK, et al. Spectrophotometric estimation of Paclitaxel. Int J Adv Pharm Sci 2011;2:29–32
  • Mishra V, Kesharwani P, Jain NK. Functionalized polymeric nanoparticles for delivery of bioactives. Nanobiomed 2014;3:91–123
  • Dubey M, Kesharwani P, Tiwari A, et al. Formulation and evaluation of floating microsphere containing anti diabetic drug. Int J Pharm Chem Sci 2012;1:475–9
  • Kesharwani P, Tekade RK, Jain K, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials 2014;35:5539–48
  • Birdhariya B, Kesharwani P, Jain NK. Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev Ind Pharm 2014. [Epub ahead of print]. DOI: 10.3109/03639045.2014.954584
  • Mehra NK, Jain NK. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 2013;21:745–58
  • Thakur S, Kesharwani P, Tekade RK, Jain NK. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer 2015;59:67–92
  • Boddu SH, Vaishya R, Jwala J, et al. Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA–PEG–FOL polymer. Med Chem 2012;2:68–75
  • Mody N, Tekade RK, Mehra NK, et al. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech 2014;15:388–99
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 2014. [Epub ahead of print]. doi:10.1016/j.drudis.2014.12.012
  • Muruganeshan SK, Subramaniyan G, Averineni RK, et al. PEGylated PLGA nanoparticulate delivery of docetaxel: synthesis of diblock copolymers, optimization of preparation variable formulation characteristics and in vitro release studies. J Biomed Nanotechnol 2007;3:52–60
  • Mehra NK, Verma AK, Mishra PR, Jain NK. The cancer targeting potential of d-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 2014;35:4573–88
  • Boddu SH, Jwala J, Chowdhury MR, Mitra AK. In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug. J Ocul Pharmacol Ther 2010;26:459–68
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res 2014. [Epub ahead of print]. DOI: 10.1007/s11095-014-1549-2
  • Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2008;2:1696–702
  • Kesharwani P, Tekade RK, Jain NK. Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine (Lond) 2014;9:2291–308
  • Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Rel 2004;100:247–56
  • Choy JH, Jung JS, Oh JM, et al. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004;25:3059–64
  • Liang C, Yang Y, You L, et al. Improved therapeutic effect of folate-decorated PLGA–PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem 2011;19:4057–66
  • Akasaka K, Gyimesi-Forras K, Lammerhofer M, et al. Investigations of molecular recognition aspects related to the enantiomer separation of 2-methoxy-2-(1-naphthyl) propionic acid using quinine carbamate as chiral selector: an NMR and FT-IR spectroscopic as well as X-ray crystallographic study. Chirality 2005;17:544–55
  • Yang SJ, Lin FH, Tsai KC, et al. Folic acid-conjugate chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconj Chem 2010;21:679–89
  • Dube D, Francis M, Leroux JC, Winnik FM. Preparation and tumor cell uptake of poly(N-isopropylacrylamide) folate conjugates. Bioconj Chem 2002;13:685–92
  • Ganji F, Abdekhodaie MJ. Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym 2008;74:435–41
  • Rubiana MM, Raul CF. PLGA nanoparticles contain praziquantel: effect of formulation variables on size distribution. Int J Pharm 2005;290:137–44
  • Dodiya SS, Chavhan SS, Sawant KK, Korde AG. Solid lipid nanoparticles and nanosuspension formulation of saquinavir: preparation, characterization, pharmacokinetics and biodistribution studies. J Microencapsul 2011;28:515–27
  • Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 2009;29:3867–76
  • Bolourchian N, Mahboobian MD, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res 2013;12:11–20
  • Patel R, Patel M. Preparation, characterization, and dissolution behavior of a solid dispersion of simvastatin with polyethylene glycol 4000 and polyvinylpyrrolidone k30. J Disper Sci Tech 2008;29:193–204
  • Florea GM, Ficai A, Oprea O, et al. Drug delivery systems based on silica with prolonged delivery of folic acid. Roman J Mater 2012;42:313–16
  • Haidary SM, Corcoles EP, Ali NK. Folic acid delivery device based on porous silicon nanoparticles synthesized by electrochemical etching. Int J Electrochem Sci 2013;8:9956–66
  • McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics. Methods Mol Biol 2011;697:3–8
  • Sun YN, Wang CD, Zhang XM, et al. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J Nanosci Nanotechnol 2011;11:1210–16
  • Elbayoumi TA, Torchilin VP. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Euro J Pharm Sci 2007;32:159–68
  • Chen H, Ahn R, Bossche VJ, et al. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 2009;8:1955–63
  • Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2010;2:1911–28
  • Hattori Y, Maitani Y. Folate-linked nanoparticles-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 2005;12:796–809
  • Pajonk F, Himmelsbach J, Riess K, et al. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 2002;62:5230–5
  • Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP1/ABCG2). J Pharmacol Exp Ther 2004;310:334–41
  • Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP1 (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007;59:238–45
  • Maksimovic-Ivanic D, Mijatovic S, Miljkovic D, et al. The antitumor properties of a nontoxic, nitric oxide-modified version of saquinavir independent of Akt. Mol Cancer Ther 2009;8:1169–78
  • Sgadari C, Toschi E, Palladino C, et al. Mechanism of paclitaxel activity in Kaposi’s sarcoma. J Immunol 2000;165:509–17
  • Pyrko P, Kardosh A, Wang W, et al. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res 2007;67:10920–8
  • Holm J, Ingemann Hansen S, Hoier-Madsen M. High-affinity folate binding in human prostate. Biosci Reports 1993;13:99–105
  • Rothweiler F, Michaelis M, Brauer P, et al. Anticancer effects of the nitric oxide-modified saquinavir derivative saquinavir-NO against multidrug-resistant cancer cells. Neoplasia 2010;12:1023–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.