161
Views
14
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLECellular and Molecular Biology

Geldanamycin-Induced PCNA Degradation in Isolated Hsp90 Complex from Cancer Cells

, , , &
Pages 635-641 | Published online: 15 Apr 2010

REFERENCES

  • Young, J.C.; Moarefi, I.; Hartl, F.U. Hsp90: a specialized but essential protein-folding tool. J Cell Biol 2001, 154, 267–273.
  • Brown, M.A.; Zhu, L.; Schmidt, C.; Tucker, P.W. Hsp90: from signal transduction to cell transformation. Biochem Biophys Res Commun 2007, 363, 241–246.
  • DeZwaan, D.C.; Freeman, B.C. Hsp90. Cell Cycle 2008, 7, 1006–1012.
  • Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecule chaperone: an open and shut case for treatment. Biochem J 2008, 410, 439–453.
  • Pratt, W.B. The role of the Hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 1997, 37, 297–326.
  • Bardwell, J.C.; Craig, E.A. Ancient heat shock gene is dispensible. J Bacteriol 1988, 170, 2977–2983.
  • Borkovich, K.A.; Farrelly, F.W.; Finkelstein, D.B.; Taulien, J.; Lindquist, S. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperature. Mol Cell Biol 1989, 9, 3919–3930.
  • Falsone, S.F.; Gesslbauer, B.; Tirk, F.; Piccinini, A.-M.; Kungl, A.J. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 2005, 579, 6350–6354.
  • Maloney, A.; Workman, P. Hsp90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002, 2, 3–24.
  • Millson, S.H.; Truman, A.W.; Wolfram, F.; King, V.; Panaretou, b.; Prodromou, C.; Pearl, L.H.; Piper, P.W. Investigating the protein–protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach. Cell Stress & Chaperones 2004, 9, 359–368.
  • Prodromou, C.; Roe, S.M.; O’Brian, R.; Ladbury, J.E.; Piper, P.W.; Pearl., L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997, 90, 65–75.
  • Sarto, C.; Binz, P.-A.; Mocarelli., P. Heat shock proteins in human cancer. Electrophoresis 2000, 21, 1218–1226.
  • Ferrarini, M.; Heltai, S.; Zocchi, M.R.; Rugarli, C. Unusual expression and localization of heat shock proteins in human tumor cells. Int J Cancer 1992, 51, 613–619.
  • Ochel, H.-J.; Eichhorn, K.; Gademann, G. Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress & Chaperones 2001, 6, 105–112.
  • Soga, S.; Neckers, L.M.; Schulte, T.W.; Shiotsu, Y.; Akasaka, K.; Narumi, H.; Agatsuma, T.; Ikuina, Y.; Murakata, C.; Tamaoki, T.; Akinaga, S. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 1999, 59, 2931– 2938.
  • Soga, S.; Sharma, S.V.; Shiotsu, Y.; Shimizu, M.; Tahara, T.; Yamaguchi, K.; Ikuina, Y.; Murakata, C.; Tamaoki, T.; Kurebayashi, J.; Schulte, T.W.; Neckers, L.M.; Akinaga, S. Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol 2001, 48, 435–445.
  • Sato, S.; Fujita, N.; Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci, USA 2000, 97, 10832–10837.
  • Schulte, T.W.; Blagosklonny, M.V.; Ingui, C.; Neckers, L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 1995, 270, 24585–24588.
  • Stancato, F.; Silverman, A.M.; Owens-Grillo, J.K.; Chow, Y.-H.; Jove, R.; Pratt, W.B. The Hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 1997, 272, 4013–4020.
  • Tikhomirov, O.; Carpenter, G. Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation. J Biol Chem 2001, 276, 33675–33680.
  • Whitesell, L.; Sutphin, P.D.; Pulcini, E.J.; Martinez, J.D.; Cook, P.H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an Hsp90-binding agent. Mol Cell Biol 1998, 18, 1517–1524.
  • Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366.
  • Houry, W.A.; Frishman, D.; Eckerskorn, C.; Lottspeich, F.; Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999, 402, 147–154.
  • Kracmarova, A.; Cermak, J.; Brdicka, R.; Bruchova, H. High expression of ERCC1, FLT1, NME4 and PCNA associated with poor prognosis and advanced stages in myelodysplastic syndrome. Leukemia & Lymphoma 2008, 49, 1297–1305.
  • Zhao, R.; Davey, M.; Hsu, Y.C.; Kaplanek, P.; Tong, A.; Parsons, A.B.; Krogan, N.; Cagney, G.; Mai, D.; Greenblatt, J.; Boone, C.; Emili, A.; Houry, W.A. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 2005, 120, 715–727.
  • Millson, S.H.; Truman, A.W.; King, V.; Prodromou, C.; Pearl, L.H.; Piper, P.W. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated protein kinases, Slt2p (Mpk1p). Eukaryotic Cell 2005, 4, 849–860.
  • Morishima, Y.; Kanelakis, K.C.; Murphy, P.; Shewach, D.S.; Pratt, W.B. Evidence for iterative ratcheting of receptor-bound Hsp70 between its ATP and ADP conformations during assembly of glucocorticoid receptor.Hsp90 heterocomplexes. Biochemistry 2001, 40, 1109–1116.
  • Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410.
  • Blagg, B.S.J.; Kerr, T.D. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006, 26, 310–338.
  • Xu, W.; Neckers, L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 2007, 13, 1625– 1629.
  • Whitesell, L.; Mimnaugh, E.G.; Costa, B.D.; Myers, C.E.; Neckers, L.M. Inhibition of heat shock protein Hsp90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. PNAS 1994, 91, 8324–8328.
  • Warbrick, E. The puzzle of PCNA's many partners. BioEssays 2000, 22, 997–1006.
  • Miyachi, K.; Fritzler, M.J.; Tan, E.M. Autoantibodies to a nuclear antigen in proliferating cells. J Immunol 1978, 121, 2228–2234.
  • Brava, R.; Celis, J.E. A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J Cell Biol 1980, 84, 795–802.
  • Kelman, Z. PCNA: structure, functions and interactions. Oncogene 1997, 14, 629–640.
  • Prelich, G.; Stillman, B. Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 1988, 53, 117–126.
  • Prelich, G.; Tan, C.K.; Kostura, M.; Mathews, M.B.; So, A.G.; Downey, K.M.; Stillman, B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δ auxiliary protein. Nature 1987, 326, 517–520.
  • Naryzhny, S.N. Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci 2008, 65, 3789–3808.
  • Minami, Y.; Kawasaki, H.; Minami, M.; Tanahashi, N.; Tanaka, K.; Yahara, I. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein folding. J Biol Chem 2000, 275, 9055–9061.
  • Eleuteri, A.M.; Cuccioloni, M.; Bellesi, J.; Lupidi, G.; Fioretii, E.; Angeletti, M. Interaction of Hsp90 with 20S proteasome: thermodynamic and kinetic characterization. PROTEIN Struct Funct Genet 2002, 48, 169–177.
  • Briknarova, K.; Takayama, S.; Brive, L.; Havert, M.L.; Knee, D.A.; Velasco, J.; Homma, S.; Cabezas, E.; Stuart, J.; Hoyt, D.W.; Satterthwait, A.C.; Llinas, M.; Reed, J.C.; Ely, K.R. Structural analysis of BAG1 cochaperone and its interaction with Hsc70 heat shock protein. Nat Struct Biol 2001, 8, 349–352.
  • Connell, P.; Ballinger, C.A.; Jiang, J.; Wu, Y.; Thompson, L.J.; Hohfeld, J.; Patterson, C. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001, 3, 93–96.
  • Meacham, G.C.; Patterson, C.; Zhang, W.; Younger, J.M.; Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001, 3, 100– 105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.