34
Views
51
CrossRef citations to date
0
Altmetric
Original Article

The Chloroethylnitrosoureas: Sensitivity and Resistance to Cancer Chemotherapy at the Molecular Level

Pages 588-598 | Published online: 11 Jun 2009

References

  • Goodman L S, Wintrobe M M, Dameshek W, et al. Nitrogen mustard therapy. J Am Med Assoc 1946; 132: 126–132
  • Hemminki K, Ludlum D B. Covalent modification of DNA by antineoplastic agents. J Natl Cancer Inst 1984; 73: 1021–1028
  • Greene M O, Greenberg J. The activity of nitrosoguanidines against ascites tumors in mice. Cancer Res 1960; 44: 1166–1171
  • Schepartz S A. Early history and development of the nitrosoureas. Cancer Treat Rep 1976; 60: 647–649
  • Skipper H E, Schabel F M, Jr, Trader M W, et al. Experimental evaluation of potential anticancer agents. VI. Anatomical distribution of leukemic cells and failure of chemotherapy. Cancer Res 1961; 21: 1154–1164
  • Montgomery J A. Chemistry and structure-activity studies of the nitrosoureas. Cancer Treat Rep 1976; 60: 651–664
  • Montgomery J A. The development of the nitrosoureas: A study in congener synthesis. Nitrosoureas: Current Status and New Developments, A W Prestayko, S T Crooke, et al. Academic Press, New York 1981; 3–8
  • Goldin A. Historical overview of nitrosourea development. Nitrosoureas in Cancer Treatment, B Serrou, P S Schein, J-L Imbach. Elsevier, Amsterdam 1981; 3–11
  • Evans J S, Gerritsen G C, Mann K M, et al. Antitumor and hyperglycemic activity of streptozotocin (NSC-27914) and its cofactor, U-15, 774. Cancer Chemother 1965; 48: 1–6
  • Johnston T P, McCaleb G S, Montgomery J A. Synthesis of chlorozotocin, the 2-chloroethyl analog of the anticancer antibiotic streptozotocin. J Med Chem 1975; 18: 104–106
  • Hoth D F, Duque-Hammershaimb L. Chlorozotocin: Clinical trials. Nitrosoureas: Current Status and New Developments, A W Prestayko, S T Crooke, L H Baker, S K Carter, P S Schein. Academic Press, New York 1981; 387–398
  • Shimizu F, Arakawa M. Antitumor activity of 3-{(4-amino-2-methy 1-5-pyrimidinyl) methyl} -1 -(2-chloroethyl)-1 -nitrosourea hydrochloride in a variety of experimental tumors. Gann 1978; 69: 545–548
  • Carter S K, Schabel F M, Jr, Broder L E, et al. 1,3-Bis(2-chloroethyl)-1 -nitrosourea (BCNU) and other nitrosoureas in cancer treatment: A review. Adv Cancer Res 1972; 16: 273–332
  • Colvin M. Alkylating agents and platinum antitumor compounds. Cancer Medicine, 3rd ed, J F Holland, E Frei, III, R C Bast, Jr, D W Kufe, D L Morton, R R Weichselbaum. Lea & Febiger, Philadelphia 1993; 733–754
  • Wheeler G P. Mechanism of action of nitrosoureas. Handbook of Experimental Pharmacology, Vol XXXVII/2, A C Sartorelli, D G Johns. Springer-Verlag, New York 1975; 65–84
  • Lijinsky W, Garcia H, Keefer L, et al. Carcinogenesis and alkylation of rat liver nucleic acids by nitrosomethylurea and nitrosoethylurea administered by intraportal injection. Cancer Res 1972; 32: 893–897
  • Kramer B S, Fenselau C C, Ludlum D B. Reaction of BCNU (1,3-bis[2-chloroethyl]-1-nitrosourea) with polycytidylic acid. Substitution of the cytosine ring. Biochem Biophys Res Commun 1974; 56: 783–778
  • Ludlum D B, Kramer B S, Wang J, et al. Reaction of l,3-bis-(2-chloroethyl)-1 -nitrosourea with synthetic polynucleotides. Biochemistry 1975; 14: 5480–5485
  • Ludlum D B, Tong W P. DNA modification by the nitrosoureas: Chemical nature and cellular repair. Experimental and Clinical Progress in Cancer Chemotherapy, F M Muggia. M Nijhoff, Boston 1985; 141–154
  • Ludlum D B. DNA alkylation by the haloethylnitrosoureas: Nature of modifications produced and their enzymatic repair or removal. Mutat Res 1990; 233: 117–126
  • Singer B, Grunberger D. Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York 1983; 56–69
  • Gombar C T, Tong W P, Ludlum D B. Mechanism of action of the nitrosoureas. IV. Reactions of BCNU and CCNU with DNA. Biochem Pharmacol 1980; 29: 2639–2654
  • Tong W P, Kirk M C, Ludlum D B. Molecular pharmacology of the haloethyl nitrosoureas: Formation of 6-hydroxyethylguanine in DNA by reaction with BCNU (N,N'-bis-[2-chloroethyl]-N-nitrosourea). Biochem Biophys Res Commun 1981; 100: 351–357
  • Parker S, Kirk M C, Ludlum D B. Synthesis and characterization of 06-(2-chloroefhyl)guanine: A putative intermediate in the cytotoxic reaction of chloroethylnitrosoureas with DNA. Biochem Biophys Res Commun 1987; 148: 1124–1128
  • Tong W P, Ludlum D B. Mechanism of action of the nitrosoureas. III. Reaction of bis-chloroethyl nitrosourea and bis-fluoroethyl nitrosourea with adenosine. Biochem Pharmacol 1979; 28: 1175–1179
  • Habraken Y, Carter C A, Kirk M C, et al. Formation of N2,3-ethanoguanine in DNA after in vitro treatment with the therapeutic agent, N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea. Carcinogenesis 1990; 11: 223–228
  • Kohn K W. Interstrand cross-linking of DNA by l,3-bis-(2-chloroethyl)-1-nitrosourea and other l-(2-haloethyl)-1-nitrosoureas. Cancer Res 1977; 37: 1450–1454
  • Tong W P, Ludlum D B. Formation of the cross-linked base, diguanylethane, in DNA treated with N,N'-bis(2-chloroethyl)-N-nitrosourea. Cancer Res 1981; 41: 380–382
  • Tong W P, Kirk M C, Ludlum D B. Formation of the cross-link, 1-[N3-deoxycytidyl],2-[N1-deoxyguanosinyl]-ethane, in DNA treated with N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU). Cancer Res 1982; 42: 3102–3105
  • Erickson L C, Laurent G, Sharkey N A, et al. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature 1980; 288: 727–729
  • Gonzaga P E, Brent T P. Affinity purification and characterization of human O6-alkylguanine-DNA alkyltransferasae complexed with BCNU-treated, synthetic oligonucleotide. Nucleic Acids Res 1989; 17: 6581–6590
  • Macfarland J G, Kirk M C, Ludlum D B. Mechanism of action of the nitrosoureas. VI. Synthesis of the 2-haloethylnitrosourea-induced DNA crosslink, 1-(3-cytosinyl),2-(1-guanyl)ethane. Biochem Pharmacol 1990; 39: 33–36
  • Bodell W J, Pongracz K. Chemical synthesis and detection of the crosslink 1-[N3-(2′-deoxycytidyl)]-2-[N1-(2′-deoxyguanosinyl)] ethane in DNA reacted with l-(2-chloroethyl)-1-nitrosourea. Chem Res Toxicol 1993; 6: 434–438
  • Ali-Osman F. Quenching of DNA crosslink precursors of chloroethylnitrosoureas and attenuation of DNA interstrand crosslinking by glutathione. Cancer Res 1989; 49: 5258–5261
  • Bodell W J, Tokuda K, Ludlum D B. Differences in DNA alkylation products formed in sensitive and resistant human glioma cells treated with N-(2-chloroethyl)-N-nitrosourea. Cancer Res 1988; 48: 4489–4492
  • Robins P, Harris A L, Goldsmith I, et al. Crosslinking of DNA induced by chloroethylntrosourea is prevented by 06-methylgua-nine-DNA methyltransferase. Nucleic Acids Res 1983; 11: 7743–7758
  • Brent T P. Suppression of crosslink formation in chloroethylnitrosourea-treated DNA by an activity in extracts of human leukemic lymphoblasts. Cancer Res 1984; 44: 1887–1892
  • Ludlum D B, Mehta J R, Tong W P. Prevention of 1-(3-deoxycytidyl),2-(1-deoxyguanosinyl)-ethane crosslink formation in DNA by O6-alkylguanine-DNA alkyltransferase. Cancer Res 1986; 46: 3353–3357
  • Bennett R A, Pegg A E. Alkylation of DNA in rat tissues following adminstration of streptozotocin. Cancer Res 1981; 41: 2786–2790
  • Pegg A E, Dolan M E, Moschel R C. Structure, function and inhibition of 06-alkylguanine-DNA alkyltransferase. Prog Nucleic Acids Res Mol Bio 1995; 51: 167–223
  • Karran P. Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair. Proc Natl Acad Sci USA 1985; 82: 5285–5289
  • Dolan M E, Morimoto K, Pegg A E. Reduction of O6-alkylguanine-DNA alkyltransferase activity in HeLa cells treated with O6-alkylguanines. Cancer Res 1985; 45: 6413–6417
  • Dolan M E, Moschel R C, Pegg A E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 1990; 87: 5368–5372
  • Futscher B W, Micetich K C, Barnes D M, et al. Inhibition of a specific DNA repair system and nitrosourea cytotoxicity in resistant human cancer cells. Cancer Commun 1989; 1: 65–73
  • Gerson S L. Modulation of human lymphocyte O6-alkylguanine-DNA alkyltransferase by streptozotoc in in vivo. Cancer Res 1989; 49: 3134–3138
  • Allay J A, Dumenco L L, Koc O N, et al. Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 1995; 85: 3342–3351
  • Moritz T, Mackay W, Glassner B J, et al. Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 1995; 55: 2608–2614
  • Belanich M, Pastor M, Randall T, et al. Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res 1996; 56: 783–788
  • Silber J R, Bobola M S, Ewers T G, et al. O6-Alkylguanine DNA-alkyltransferase is not a major determinant of sensitivity to 1,3-bis(chloroethyl)-1-nitrosourea in four medulloblastoma cell lines. Oncol Res 1992; 4: 241–248
  • Walker M C, Masters J R, Margison G P. O6-Alkylguanine-DNA-alkyltransferase activity and nitrosourea sensitivity in human cancer cell lines. Br J Cancer 1992; 66: 840–843
  • Kacinski B M, Rupp W D, Ludlum D B. Repair of haloethylnitrosourea-induced DNA damage in mutant and adapted bacteria. Cancer Res 1985; 45: 6471–6474
  • Wu Z, Chan C L, Eastman A, et al. Expression of human O6-methylguanine-DNA methyltransferase in a DNA excision repair-deficient Chinese hamster ovary cell line and its response to certain alkylating agents. Cancer Res 1992; 52: 32–35
  • Hata H, Numata M, Tohda H, et al. Isolation of two chloroethyl-nitrosourea-sensitive Chinese hamster lines. Cancer Res 1991; 51: 195–198
  • Lindahl T, Sedgwick B, Sekiguchi M, et al. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 1988; 57: 133–157
  • Habraken Y, Carter C A, Sekiguchi M, et al. Release of N2,3-ethanoguanine from haloethylnitrosourea-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Carcinogenesis 1991; 12: 1971–1973
  • Habraken Y, Carter C A, Kirk M C, et al. Release of 7-alkylgua-nines from N-(2-chloroethyl)-N-cyclohexyl-N-nitrosourea-modified DNA by 3-methyladenine DNA glycosylase. Cancer Res 1991; 51: 499–503
  • Matijasevic Z, Bodell W J, Ludlum D B. 3-Methyladenine DNA glycosylase activity in a glial cell line sensitive to the haloethyl-nitrosoureas in comparison with a resistant cell line. Cancer Res 1991; 51: 1568–1570
  • Cappelli E, Redaelli A, Rivano M E, et al. Repair of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-induced damage by mammalian cell extracts. Carcinogenesis 1995; 16: 2267–2270
  • Engelward B, Dreslin A, Christensen J, et al. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and killing. EMBO J 1996; 15: 945–952
  • Parker S, Kirk M C, Ludlum D B, et al. Reaction of 1,3-bis-(2-chloroefhyl)-1-nitrosourea (BCNU) wtih guanosine: Evidence for a new mechansim of DNA modification. Biochem Biophys Res Commun 1986; 139: 31–36
  • Naghipur A, Ikonomou M G, Kebarle P, et al. Mechanism of action of (2-haloethyl)nitrosoureas on DNA: Discrimination between alternative pathways of DNA base modification by 1,3-bis-(2-fluoroethyl)-1-nitrosourea by using specific deuterium labeling and identification of reaction products by HPLC/tandem mass spectrometry. J Am Chem Soc 1990; 112: 3178–3187
  • Tong W P, Kohn K W, Ludlum D B. Modifications of DNA by different haloethylnitrosoureas. Cancer Res 1982; 42: 4460–4464
  • Hartley J A, Gibson N W, Kohn K W, et al. DNA sequence specificity of guanine-N7 alkylation by three antitumor chloroethylating agents. Cancer Res 1986; 46: 1943–1947
  • Gold B, Church K M, Wurdeman R L, et al. Control over the sequence specificity of DNA alkylation: Syntheses and reactions with 32P-end-labelled DNA of N-alkyl-N-nitrosoureas linked to minor groove binding lexitropsins. IARC Sci Publ 1991; 105: 439–442
  • Chen F X, Zhang Y, Church K M, et al. DNA crosslinking, sister chromatid exchange and cytotoxicity of N-2-chloroethylni-trosoureas tethered to minor groove binding peptides. Carcinogenesis 1993; 14: 935–940
  • Kann H E, Jr. Carbamoylating activity of the nitrosoureas. Nitrosoureas: Current Status and New Developments, A W Prestayko, S T Crooke, L H Baker, S K Carter, P S Schein. Academic Press, New York 1981; 95–105
  • Moschel R C, McDougall M G, Dolan M E, et al. Structural features of substituted purine derivatives compatible with depletion of human O6-alkylguanine-DNA alkyltransferase. J Med Chem 1992; 35: 4486–4491
  • Chae M Y, McDougalll M G, Dolan M E, et al. Substituted O6-benzylguanine derivatives and their inactivation of human O6-alkylguanine-DNA alkyltransferase. J Med Chem 1994; 37: 342–347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.