10
Views
53
CrossRef citations to date
0
Altmetric
Original Article

Immunoreactive Glutamic Acid Decarboxylase in the Trigeminal Nucleus Caudalis of the Cat: A Light- and Electron-Microscopic Analysis

, &
Pages 77-94 | Published online: 10 Jul 2009

References

  • Aronin N., Difiglia M., Liotta A. S., Martin J. B. Ultrastructural localization and biochemical features of immunoreactive leuenkephalin in monkey dorsal horn. J. Neurosci. 1981; 1: 561–577
  • Barbaro N. M., Hammond D. L., Fields H. L. Effects of intrathecally administered methysergide and yohimbine on micro‐stimulation‐produced antinociception in the rat. Brain Res. 1985; 343: 223–229
  • Barber R. P., Vaughn J. E., Roberts E. The cytoarchitecture of GABAergic neurons in rat spinal cord. Brain Res. 1982; 238: 305–328
  • Barber R. P., Vaughn J. E., Saito K., McLaughlin B. J., Roberts E. GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res. 1978; 141: 35–55
  • Barker J. L., Nicoll R. A. Gamma‐aminobutyric acid: Role in primary afferent depolarization. Science 1972; 176: 1043–1045
  • Basbaum A. I. Functional analysis of the cytochemistry of the spinal dorsal horn. Adv. Pain Res. Ther. 1985; 9: 149–175
  • Basbaum A. I., Fields H. L. Endogenous pain control mechanisms: Review and hypothesis. Ann. Neurol. 1978; 4: 451–462
  • Basbaum A. I., Fields H. L. Endogenous pain control systems: Brainstem‐spinal circuitry and endorphins. Ann. Rev. Neurosci. 1984; 7: 309–338
  • Basbaum A. I., Glazer E. J., Oertel W. A light and EM analysis of immunoreactive glutamic acid decarboxylase (GAD) in the spinal and trigeminal dorsal horn of the cat. Soc. Neurosci. Abstr. 1981; 7: 528
  • Basbaum A. I., Moss M. S., Glazer E. J. Opiate and stimulation‐produced analgesia: The contribution of the monoamines. Adv. Pain Res. Ther. 1983; 5: 323–339
  • Bowery N. G. Baclofen: 10 years on. Trends Pharm. Sci. 1982; 3: 400–403
  • Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Turnbull M. Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980; 283: 92–94
  • Carstens E., Klumpp D., Randic M., Zimmermann M. Effect of iontophoretically applied 5‐hydroxytryptamine on the excitability of single primary afferent C‐ and A‐fibers in the cat spinal cord. Brain Res. 1982; 220: 151–158
  • Cruz L., Basbaum A. I. Multiple opioid peptides and the modulation of pain: Immuno‐histochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. J. Comp. Neurol. 1985; 230: 331–348
  • Curtis D. R., Lodge D., Brand S. J. GABA and spinal afferent terminal excitability in the cat. Brain Res. 1977; 130: 360–363
  • Davidoff R. A. Gamma‐aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord. Science 1972; 175: 331–333
  • Desarmenien M., Feltz P., Occhipiniti G., Santangelo F., Schlichter R. Coexistence of GABAa and GABAb receptors on A and C primary afferents. Brit. J. Pharmacol. 1984; 81: 327–333
  • Deschenes M., Feltz P., Lamour Y. A model for an estimate in vivo of the ionic basis of presynaptic inhibition: An intracellular analysis of the GABA‐induced depolarization in rat dorsal root ganglia. Brain Res. 1976; 118: 486–493
  • Dickenson A. H., Brewer C. M., Hayes N. A. Effects of baclofen on C fibre‐evoked neuronal activity in the rat dorsal horn. Neuro‐science 1985; 14: 557–562
  • Fitzgerald M., Woolf C. The stereospecific effect of naloxone on rat dorsal horn neurones: Inhibition in superficial laminae and excitation in deeper laminae. Pain 1980; 9: 293–306
  • Glazer E. J., Basbaum A. I. Immunohistochemical localization of leucine‐enkephalin in the spinal cord of the cat: Enkephalin‐containing marginal neurons and pain modulation. J. Comp. Neurol. 1981; 196: 377–389
  • Glazer E. J., Basbaum A. I. Opioid neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 1983; 10: 357–376
  • Glusman S. Correlation between the topographical distribution of 3H GABA uptake and primary afferent depolarization in the frog spinal cord. Brain Res. 1975; 88: 109–114
  • Gmelin G., Zimmermann M. Effects of γ‐aminobutyrate and bicuculline on primary afferent depolarization of cutaneous fibers in the cat spinal cord. Neuroscience 1983; 10: 869–874
  • Gobel S. Synaptic organization of the substantia gelatinosa glomeruli in the spinal trigeminal nucleus of the adult cat. J. Neurocytol. 1974; 3: 219–243
  • Gobel S. Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 1978; 180: 395–414
  • Gobel S. Neural circuitry in the substantia gelatinosa of Rolando: Anatomical insights. Adv. Pain Res. Ther. 1979; 3: 175–195
  • Gobel S., Falls W. M., Bennett G. J., Abdelmounmene M., Hayashi H., Humphrey E. An EM analysis of the synaptic connections of horseradish peroxidase‐filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. J. Comp. Neurol. 1980; 194: 781–807
  • Henry J. L. Effects of intravenously administered enantiomers of baclofen on functionally identified units in lumbar dorsal horn of the spinal cat. Neuropharmacology 1982a; 21: 1073–1083
  • Henry J. L. Pharmacological studies on the prolonged depressant effects of baclofen on lumbar dorsal horn units in the cat. Neuropharmacology 1982b; 21: 1085–1093
  • Hentall I. D., Fields H. L. Actions of opiates, substance P, and serotonin on the excitability of primary afferent terminals and observations on interneuronal activity in the neonatal rat's dorsal horn in vitro. Neuroscience 1983; 9: 521–528
  • Hunt S. P., Kelly J. S., Emson P. C. The electron microscopic localization of methionine‐enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 1980; 5: 1871–1890
  • Hunt S. P., Kelly J. S., Emson P. C., Kimmel J. R., Miller R. J., Wu J. Y. An immunohistochemical study of neuronal populations containing neuropeptides or γ‐aminobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 1981; 6: 1883–1898
  • Iversen L. L., Bloom F. E. Studies of the uptake of 3H GAB A and 3H glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972; 41: 131–143
  • Jensen T. S., Yaksh T. L. II. Examination of spinal monoamine receptors through which brainstem opiate‐sensitive systems act in the rat. Brain Res. 1986; 363: 114–127
  • Jessel T. M., Iversen L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 1977; 268: 549–551
  • LaMotte C. C., de Lanerolle N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey: II. Methionine‐enkephalin immunoreactivity. Brain Res. 1983a; 274: 51–63
  • LaMotte C. C., de Lanerolle N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey: III. Serotonin immunoreactivity. Brain Res. 1983b; 274: 65–77
  • Levy R. A. GABA: A direct depolarizing action at the mammalian primary afferent terminal. Brain Res. 1974; 76: 155–160
  • Levy R. A. The role of GABA in primary afferent depolarization. Prog. Neurobiol. 1977; 9: 211–267
  • Light A. R., Kavookjian A. M., Petrusz P. The ultrastructure and synaptic connections of serotonin‐immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1983; 1: 33–50
  • Ljungdahl A., Hokfelt T. Autoradiographic uptake patterns of 3H GABA and 3H glycine in central nervous tissues with special reference to the cat spinal cord. Brain Res. 1973; 62: 587–595
  • Lovick T. A. Enkephalin blocks primary afferent depolarization of Aδ tooth pulp afferents evoked by stimulation in nucleus raphe magnus in the decerebrate cat. Neurosci. Lett. 1983a; 37: 273–278
  • Lovick T. A. The role of 5‐HT, GABA and opioid peptides in presynaptic inhibition of tooth pulp from the medial brainstem. Brain Res. 1983b; 289: 135–142
  • McLaughlin B. J., Barber R., Saito K., Roberts E., Wu J. ‐Y. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 1975; 164: 305–322
  • Miyata Y., Otsuka M. Quantitative histochemistry of γ‐aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition. J. Neurochem. 1975; 24: 239–244
  • Moreau J. L., Fields H. L. Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res.
  • Nicoll R. A., Alger B. E., Jahr R. A. Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature 1980; 287: 22–25
  • Oertel W. H., Schmechel D. E., Tappaz M. L., Kopin I. J. Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen‐antibody complex. Neuroscience 1981; 6: 2689–2700
  • Patrick J. T., McBride W. J., Felten D. L. Distribution of glycine, GABA, aspartate and glutamate in the rat spinal cord. Brain Res. 1983; 10: 415–418
  • Perez de la Mora M., Possani L. D., Tapia R., Teran L., Palacios R., Fuxe K., Hokfelt T., Ljungdahl A. Demonstration of central γ‐aminobutyrate‐continuing nerve terminals by means of antibodies against glutamate decarboxylase. Neuroscience 1981; 6: 875–895
  • Price G. W., Wilkin G. P., Turnbull M. J., Bowery N. G. Are baclofen sensitive GABAb receptors present on primary afferent terminals of the spinal cord?. Nature 1984; 307: 71–74
  • Proudfit H. K., Larson A. A., Anderson E. G. The role of GABA and serotonin in the mediation of raphe‐evoked spinal cord dorsal root potentials. Brain Res. 1980; 195: 149–165
  • Proudfit H. K., Levy R. A. Delimitation of neuronal substrate necessary for the analgesic action of baclofen and morphine. Eur. J. Pharmacol. 1978; 47: 159–166
  • Ralston H. J., III, Ralston D. D. The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: A quantitative electron microscope study. J. Comp. Neurol. 1979; 184: 643–684
  • Randic M. Presynaptic effect of γ‐aminobutyric acid and substance P on intraspinal single cutaneous C‐ and A‐fibers. Spinal Cord Sensation, A. G. Brown, M. Rethelyi. Scottish Academic Press, Edinburgh 1981; 285–294
  • Ribeiro‐da‐Silva A., Coimbra A. Neuronal uptake of 3H GABA and 3H glycine in laminae I‐III (substantia gelatinosa Rolandi) of the rat spinal cord: An autoradiographic study. Brain Res. 1980; 188: 449–464
  • Ruda M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 1982; 215: 1523–1524
  • Ruda A., Coffield J., Steinbusch H. W. M. Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J. Neurosci. 1982; 2: 1660–1671
  • Sastry B. R. γ‐Aminobutryric acid and primary afferent depolarization in feline spinal cord. Can. J. Physiol. Pharmacol. 1979; 57: 1157–1167
  • Sastry B. R., Goh J. W. Actions of morphine and met‐enkephalin‐amide on nociceptor driven neurones in substantia gelatinosa and deeper dorsal horn. Neuropharmacology 1983; 22: 119–122
  • Sawynok J., LaBella F. S. On the involvement of GABA in the analgesia produced by baclofen, muscimol and morphine. Neuropharmacology 1982; 21: 397–403
  • Schlicter R., Demeneix B. A., Desarmenien M., Desaulles E., Loeffler J. P., Feltz P. Properties of the GABA receptors located on spinal primary afferent neurons and hypophyseal neuroendocrine cells of the rat. Neurosci. Lett. 1984; 47: 257–263
  • Sternberger L. A. Immunocytochemistry2nd ed. Wiley, New York 1979
  • Sumal K. K., Pickel V. M., Miller R. J., Reis D. J. Enkephalin‐containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructural and synaptic interaction with primary sensory afferents. Brain Res. 1982; 248: 223–236
  • Wilson P. R., Yaksh T. L. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur. J. Pharmacol. 1978; 51: 323–330
  • Yoshimura M., North R. A. Substantia gelatinosa neurons hyperpolarized in vitro by enkephalin. Nature 1983; 305: 529–530
  • Zorman G., Belcher G., Adams J. E., Fields H. L. Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat. Brain Res. 1982; 236: 77–84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.