691
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases

, , &
Pages 93-107 | Received 07 Dec 2010, Accepted 28 Jan 2011, Published online: 28 Jun 2011

References

  • Abe A, Tonozuka T, Sakano Y, Kamitori S. (2004). Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol, 335, 811–822.
  • Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S. (2005). Complexes of Thermoactinomyces vulgaris R-47 α-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS J, 272, 6145–6153.
  • Albenne C, Skov LK, Tran V, Gajhede M, Monsan P, Rémaud-Siméon M, André-Leroux G. (2007). Towards the molecular understanding of glycogen elongation by amylosucrase. Proteins-Structure Function and Bioinformatics, 66, 118–126.
  • Allouch J, Helbert W, Henrissat B, Czjzek M. (2004). Parallel substrate binding sites in a β-agarase suggest a novel mode of action on double-helical agarose. Structure, 12, 623–632.
  • Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M. (2003). The three-dimensional structures of two β-agarases. J Biol Chem, 278, 47171–47180.
  • Beg QK, Kapoor M, Mahajan L, Hoondal GS. (2001). Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326–338.
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 382, 769–781.
  • Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. (2007). The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J, 274, 5055–5067.
  • Brayer GD, Luo YG, Withers SG. (1995). The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci, 4, 1730–1742.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 37, D233–D238.
  • Casset F, Imberty A, Haser R, Payan F, Perez S. (1995). Molecular modeling of the interaction between the catalytic site of pig pancreatic α-amylase and amylose fragments. Eur J Biochem, 232, 284–293.
  • Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP. (1998). Cell wall and secreted proteins of Candida albicans: Identification, function, and expression. Microbiol Mol Biol Rev, 62, 130–180.
  • Christiansen C, Abou Hachem M, Janeček Š, Viksø-Nielsen A, Blennow A, Svensson B. (2009). The carbohydrate-binding module family 20 - diversity, structure, and function. FEBS J, 276, 5006–5029.
  • Collins T, Gerday C, Feller G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 29, 3–23.
  • Courtin CM, Delcour JA. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science, 35, 225–243.
  • Coutinho PM, Deleury E, Davies GJ, Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 328, 307–317.
  • Cuyvers S, Dornez E, Rezaei MN, Pollet A, Delcour JA, Courtin CM. (2011). Secondary substrate binding strongly affects activity and binding affinities of Bacillus subtilis and Aspergillus niger GH11 xylanases. FEBS J, 278, 1098–1111.
  • Dauter Z, Dauter M, Brzozowski AM, Christensen S, Borchert TV, Beier L, Wilson KS, Davies GJ. (1999). X-ray structure of Novamyl, the five-domain “maltogenic” α-amylase from Bacillus stearothermophilus: Maltose and acarbose complexes at 1.7 Å resolution. Biochemistry (Mosc), 38, 8385–8392.
  • De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J. (2006). Oligosaccharide binding in family 8 glycosidases: Crystal structures of active-site mutants of the β-1,4-xylanase pXyl from Pseudoalteromonas haloplanktis TAH3a in complex with substrate and product. Biochemistry (Mosc), 45, 4797–4807.
  • Dodd D, Cann IKO. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 1, 2–17.
  • Ezer A, Matalon E, Jindou S, Borovok I, Atamna N, Yu ZT, Morrison M, Bayer EA, Lamed R. (2008). Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J Bacteriol, 190, 8220–8222.
  • Fujii K, Minagawa H, Terada Y, Takaha T, Kuriki T, Shimada J, Kaneko H. (2005). Use of random and saturation mutageneses to improve the properties of Thermus aquaticus amylomaltase for efficient production of cycloamyloses. Appl Environ Microbiol, 71, 5823–5827.
  • Fujii K, Minagawa H, Terada Y, Takaha T, Kuriki T, Shimada J, Kaneko H. (2007). Function of second glucan binding site including tyrosines 54 and 101 in Thermus aquaticus amylomaltase. Journal of Bioscience and Bioengineering, 103, 167–173.
  • Gašperík J, Hostinová E, Ševčík J. (2005). Acarbose binding at the surface of Saccharomycopsis fibuligera glucoamylase suggests the presence of a raw starch-binding site. Biologia (Bratisl), 60, 167–170.
  • Genta FA, Dumont AF, Marana SR, Terra WR, Ferreira C. (2007). The interplay of processivity, substrate inhibition and a secondary substrate binding site of an insect exo-β-1,3-glucanase. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1774, 1079–1091.
  • Gibson RM, Svensson B. (1987). Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res Commun, 52, 373–379.
  • Gilbert HJ. (2010). The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol, 153, 444–455.
  • Gilles C, Astier JP, Marchis-Mouren G, Cambillau C, Payan F. (1996). Crystal structure of pig pancreatic α-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem, 238, 561–569.
  • Guce AI, Clark NE, Salgado EN, Ivanen DR, Kulminskaya AA, Brumer H, Garman SC. (2010). Catalytic mechanism of human α-galactosidase. J Biol Chem, 285, 3625–3632.
  • Guex N, Peitsch MC. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.
  • Guillén D, Sanchez S, Rodriguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol, 85, 1241–1249.
  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38, 1599–1616.
  • Hashimoto H. (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci, 63, 2954–2967.
  • Henrissat B, Sulzenbacher G, Bourne Y. (2008). Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol, 18, 527–533.
  • Hirata A, Adachi M, Utsumi S, Mikami B. (2004). Engineering of the pH optimum of Bacillus cereus β-amylase: Conversion of the pH optimum from a bacterial type to a higher-plant type. Biochemistry (Mosc), 43, 12523–12531.
  • Huet J, Rucktooa P, Clantin B, Azarkan M, Looze Y, Villeret V, Wintjens R. (2008). X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases. Biochemistry (Mosc), 47, 8283–8291.
  • Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T. (2005). The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J, 385, 703–713.
  • Janeček Š, Ševčík J. (1999). The evolution of starch-binding domain. FEBS Lett, 456, 119–125.
  • Kadziola A, Søgaard M, Svensson B, Haser R. (1998). Molecular structure of a barley α-amylase-inhibitor complex: Implications for starch binding and catalysis. J Mol Biol, 278, 205–217.
  • Kanai R, Haga K, Akiba T, Yamane K, Harata K. (2004). Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp 707. Biochemistry (Mosc), 43, 14047–14056.
  • Kanai R, Haga K, Akiba T, Yamane K, Harata K. (2006). Role of Trp140 at subsite-6 on the maltohexaose production of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. Protein Sci, 15, 468–477.
  • Kelly RM, Leemhuis H, Rozeboom HJ, van Oosterwijk N, Dijkstra BW, Dijkhuizen L. (2008). Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J, 413, 517–525.
  • Knegtel RMK, Strokopytov B, Penninga D, Faber OG, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW. (1995). Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. J Biol Chem, 270, 29256–29264.
  • Koropatkin NM, Smith TJ. (2010). SusG: A unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules. Structure, 18, 200–215.
  • Kovalchuk SN, Sundukova EV, Kusaykin MI, Guzev KV, Anastiuk SD, Likhatskaya GN, Trifonov EV, Nurminski EA, Kozhemyako VB, Zvyagintseva TN, Rasskazov VA. (2006). Purification, cDNA cloning and homology modeling of endo-1,3-β-D-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 143, 473–485.
  • Kramhøft B, Bak-Jensen KS, Mori H, Juge N, Nøhr J, Svensson B. (2005). Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley α-amylase. Biochemistry (Mosc), 44, 1824–1832.
  • Kumar P, Satyanarayana T. (2009). Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol, 29, 225–255.
  • Kurakata Y, Uechi A, Yoshida H, Kamitori S, Sakano Y, Nishikawa A, Tonozuka T. (2008). Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. J Mol Biol, 381, 116–128.
  • Larson SB, Day JS, McPherson A. (2010). X-ray crystallographic analyses of pig pancreatic α-amylase with limit dextrin, oligosaccharide, and α-cyclodextrin. Biochemistry (Mosc), 49, 3101–3115.
  • Larson SB, Greenwood A, Cascio D, Day J, Mcpherson A. (1994). Refined molecular structure of pig pancreatic α-amylase at 2.1 Å resolution. J Mol Biol, 235, 1560–1584.
  • Lawson CL, Vanmontfort R, Strokopytov B, Rozeboom HJ, Kalk KH, Devries GE, Penninga D, Dijkhuizen L, Dijkstra BW. (1994). Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol, 236, 590–600.
  • Leemhuis H, Kelly RM, Dijkhuizen L. (2010). Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol, 85, 823–835.
  • Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. (2003a). The fully conserved Asp residue in conserved sequence region I of the α-amylase family is crucial for the catalytic site architecture and activity. FEBS Lett, 541, 47–51.
  • Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. (2004). Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins-Structure Function and Genetics, 54, 128–134.
  • Leemhuis H, Uitdehaag JCM, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. (2002). The remote substrate binding subsite-6 in cyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fit mechanism. J Biol Chem, 277, 1113–1119.
  • Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJW, Dijkstra BW, Dijkhuizen L. (2003b). Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: The role of alanine 230 in acceptor subsite+1. Biochemistry (Mosc), 42, 7518–7526.
  • Leiros HKS, Timmins J, Ravelli RBG, McSweeney SM. (2006). Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? Acta Crystallographica Section D-Biological Crystallography, 62, 125–132.
  • Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M. (2003). Differential regulation of a hyperthermophilic α-amylase with a novel (Ca,Zn) two-metal center by zinc. J Biol Chem, 278, 9875–9884.
  • Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW. (1999). High resolution structure and sequence of T. aurantiacus xylanase I: Implications for the evolution of thermostability in family 10 xylanases and enzymes with βα-barrel architecture. Proteins-Structure Function and Genetics, 36, 295–306.
  • Lo Leggio L, Kalogiannis S, Eckert K, Teixeira SCM, Bhat MK, Andrei C, Pickersgill RW, Larsen S. (2001). Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett, 509, 303–308.
  • Loyter A, Schramm M. (1966). Multimolecular complexes of α-amylase with glycogen limit dextrin - Number of binding sites of enzyme and size of complexes. J Biol Chem, 241, 2611–2617.
  • Ludwiczek ML, Heller M, Kantner T, McIntosh LP. (2007). A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol, 373, 337–354.
  • Lyhne-Iversen L, Hobley TJ, Kaasgaard SG, Harris P. (2006). Structure of Bacillus halmapalus α-amylase crystallized with and without the substrate analogue acarbose and maltose. Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 62, 849–854.
  • Machius M, Vértesy L, Huber R, Wiegand G. (1996). Carbohydrate and protein-based inhibitors of porcine pancreatic α-amylase: Structure analysis and comparison of their binding characteristics. J Mol Biol, 260, 409–421.
  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. (2006). Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol, 71, 23–33.
  • Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S. (1999). Structure of raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochemistry (Mosc), 38, 7050–7061.
  • Mirza O, Skov LK, Rémaud-Siméon M, Potocki de Montalk G, Albenne C, Monsan P, Gajhede M. (2001). Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry (Mosc), 40, 9032–9039.
  • Miyake H, Kurisu G, Kusunoki M, Nishimura S, Kitamura S, Nitta Y. (2003). Crystal structure of a catalytic site mutant of β-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose. Biochemistry (Mosc), 42, 5574–5581.
  • Monsan P, Rémaud-Siméon M, André I. (2010). Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr Opin Microbiol, 13, 293–300.
  • Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ, Grondin GG, Ghinet MG, Gloster TM, Herve C, Knox JP, Talbot BG, Turkenburg JP, Kerovuo J, Brzezinski R, Fontes CMGA, Davies GJ, Boraston AB, Gilbert HJ. (2009). Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A, 106, 3065–3070.
  • Mora S, Simon I, Elodi P. (1974). Studies on active center of pancreatic amylase. I. Binding of β-cyclodextrin. Mol Cell Biochem, 4, 205–209.
  • Nielsen MM, Seo ES, Bozonnet S, Aghajari N, Robert X, Haser R, Svensson B. (2008a). Multi-site substrate binding and interplay in barley α-amylase 1. FEBS Lett, 582, 2567–2571.
  • Nielsen MM, Bozonnet S, Seo ES, Mótyán JA, Andersen JM, Dilokpimol A, Abou Hachem M, Gyémánt G, Næsted H, Kandra L, Sigurskjold BW, Svensson B. (2009). Two secondary carbohydrate binding sites on the surface of barley α-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry (Mosc), 48, 7686–7697.
  • Nielsen MM, Seo ES, Dilokpimol A, Andersen J, Abou Hachem M, Naested H, Willemoës M, Bozonnet S, Kandra L, Gyémánt G, Haser R, Aghajari N, Svensson B. (2008b). Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates. Biocatalysis and Biotransformation, 26, 59–67.
  • Oyama T, Miyake H, Kusunoki M, Nitta Y. (2003). Crystal structures of β-amylase from Bacillus cereus var. mycoides in complexes with substrate analogs and affinity-labeling reagents. J Biochem (Tokyo), 133, 467–474.
  • Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ, Cutfield JF. (2010). Carbohydrate binding sites in Candida albicans exo-β-1,3-glucanase and the role of the Phe-Phe ‘clamp’ at the active site entrance. FEBS J, 277, 4549–4561.
  • Payan F, Qian MX. (2003). Crystal structure of the pig pancreatic α-amylase complexed with malto-oligosaccharides. J Protein Chem, 22, 275–284.
  • Payan F, Haser R, Pierrot M, Frey M, Astier JP, Abadie B, Duee E, Buisson G. (1980). The three-dimensional structure of α-amylase from porcine pancreas at 5 Å resolution - The active-site location. Acta Crystallographica Section B-Structural Science, 36, 416–421.
  • Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L. (1995). Site-directed mutations in Tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry (Mosc), 34, 3368–3376.
  • Przylas I, Terada Y, Fujii K, Takaha T, Saenger W, Sträter N. (2000). X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus - Implications for the synthesis of large cyclic glucans. Eur J Biochem, 267, 6903–6913.
  • Qian MX, Haser R, Payan F. (1995). Carbohydrate binding sites in a pancreatic α-amylase-substrate complex, derived from X-ray structure analysis at 2.1 Å resolution. Protein Sci, 4, 747–755.
  • Qian MX, Spinelli S, Driguez H, Payan F. (1997). Structure of a pancreatic α-amylase bound to a substrate analogue at 2.03 Å resolution. Protein Sci, 6, 2285–2296.
  • Qian MX, Ajandouz E, Payan F, Nahoum V. (2005). Molecular basis of the effects of chloride ion on the acid-base catalyst in the mechanism of pancreatic α-amylase. Biochemistry (Mosc), 44, 3194–3201.
  • Qian MX, Nahoum V, Bonicel J, Bischoff H, Henrissat B, Payan F. (2001). Enzyme-catalyzed condensation reaction in a mammalian α-amylase. High-resolution structural analysis of an enzyme-inhibitor complex. Biochemistry (Mosc), 40, 7700–7709.
  • Ragunath C, Manuel SGA, Venkataraman V, Sait HBR, Kasinathan C, Ramasubbu N. (2008). Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding. J Mol Biol, 384, 1232–1248.
  • Ramasubbu N, Ragunath C, Mishra PJ. (2003). Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J Mol Biol, 325, 1061–1076.
  • Ramasubbu N, Ragunath C, Mishra PJ, Thomas LM, Gyémánt G, Kandra L. (2004). Human salivary α-amylase Trp58 situated at subsite-2 is critical for enzyme activity. Eur J Biochem, 271, 2517–2529.
  • Robert X, Haser R, Mori H, Svensson B, Aghajari N. (2005). Oligosaccharide binding to barley α-amylase 1. J Biol Chem, 280, 32968–32978.
  • Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B, Aghajari N. (2003). The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: A pair of sugar tongs. Structure, 11, 973–984.
  • Santos CR, Tonoli CCC, Trindade DM, Betzel C, Takata H, Kuriki T, Kanai T, Imanaka T, Arni RK, Murakami MT. (2010). Structural basis for Branching-enzyme activity of glycoside hydrolase family 57: Structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins-Structure Function and Bioinformatics.
  • Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E. (2002). The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol, 95, 109–131.
  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B. (2000). Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta, 1543, 275–293.
  • Schmidt A, Gübitz GM, Kratky C. (1999). Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Biochemistry (Mosc), 38, 2403–2412.
  • Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C. (1998). Structure of the xylanase from Penicillium simplicissimum. Protein Sci, 7, 2081–2088.
  • Ševčík J, Hostinová E, Solovicova A, Gašperík J, Dauter Z, Wilson KS. (2006). Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J, 273, 2161–2171.
  • Shoseyov O, Shani Z, Levy I. (2006). Carbohydrate binding modules: Biochemical properties and novel applications. Microbiol Mol Biol Rev, 70, 283–295.
  • Singh M, Sharma R, Banerjee UC. (2002). Biotechnological applications of cyclodextrins. Biotechnology Advances, 20, 341–359.
  • Skov LK, Mirza O, Sprogøe D, Dar I, Rémaud-Siméon M, Albenne C, Monsan P, Gajhede M. (2002). Oligosaccharide and sucrose complexes of amylosucrase. J Biol Chem, 227, 47741–47747.
  • Skov LK, Mirza O, Sprogøe D, Van der Veen BA, Rémaud-Siméon M, Albenne C, Monsan P, Gajhede M. (2006). Crystal structure of the Glu328Gln mutant of Neisseria polysaccharea amylosucrase in complex with sucrose and maltoheptaose. Biocatalysis and Biotransformation, 24, 99–105.
  • Skov LK, Mirza O, Henriksen A, Potocki de Montalk G, Rémaud-Siméon M, Sarçabal P, Willemot RM, Monsan P, Gajhede M. (2001). Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J Biol Chem, 276, 25273–25278.
  • Søgaard M, Kadziola A, Haser R, Svensson B. (1993). Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active-site and tryptophan 279 at the raw starch binding-site in barley α-amylase 1. J Biol Chem, 268, 22480–22484.
  • Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP. (1997). Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure, 5, 647–661.
  • St John FJ, González JM, Pozharski E. (2010). Consolidation of glycosyl hydrolase family 30: A dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett, 584, 4435–4441.
  • Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B. (2006). Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel, 19, 555–562.
  • Sträter N, Przylas I, Saenger W, Terada Y, Fujii K, Takaha T. (2002). Structural basis of the synthesis of large cycloamyloses by amylomaltase. Biologia (Bratisl), 57/Suppl. 11, 93–99.
  • Strokopytov B, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW. (1995). X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose - Implications for the catalytic mechanism of glycosidases. Biochemistry (Mosc), 34, 2234–2240.
  • Strokopytov B, Knegtel RMA, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW. (1996). Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 Å resolution. Implications for product specificity. Biochemistry (Mosc), 35, 4241–4249.
  • Stubbs HJ, Brasch DJ, Emerson GW, Sullivan PA. (1999). Hydrolase and transferase activities of the β-1,3-exoglucanase of Candida albicans. Eur J Biochem, 263, 889–895.
  • Tan TC, Mijts BN, Swaminathan K, Patel BKC, Divne C. (2008). Crystal structure of the polyextremophilic α-amylase AmyB from Halothermothrix orenii: Details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol, 378, 852–870.
  • Tester RF, Karkalas J, Qi X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39, 151–165.
  • Timmins J, Leiros HKS, Leonard G, Leiros I, McSweeney S. (2005). Crystal structure of maltooligosyltrehalose trehalohydrolase from Deinococcus radiodurans in complex with disaccharides. J Mol Biol, 347, 949–963.
  • Uitdehaag JCM, Kalk KH, van der Veen BA, Dijkhuizen L, Dijkstra BW. (1999a). The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at 1.8 Å resolution. J Biol Chem, 274, 34868–34876.
  • Uitdehaag JCM, van Alebeek GJWM, van der Veen BA, Dijkhuizen L, Dijkstra BW. (2000). Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity. Biochemistry (Mosc), 39, 7772–7780.
  • Uitdehaag JCM, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW. (1999b). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol, 6, 432–436.
  • van der Veen BA, Uitdehaag JCM, Penninga D, van Alebeek GJWM, Smith LM, Dijkstra BW, Dijkhuizen L. (2000). Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production. J Mol Biol, 296, 1027–1038.
  • Vandermarliere E, Bourgois TM, Rombouts S, Van Campenhout S, Volckaert G, Strelkov SV, Delcour JA, Rabijns A, Courtin CM. (2008). Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases. Biochem J, 410, 71–79.
  • Vujičić-Žagar A, Dijkstra BW. (2006). Monoclinic crystal form of Aspergillus niger α-amylase in complex with maltose at 1.8 Å resolution. Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 62, 716–721.
  • Wind RD, Uitdehaag JCM, Buitelaar RM, Dijkstra BW, Dijkhuizen L. (1998). Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem, 273, 5771–5779.
  • Ye ZM, Miyake H, Tatsumi M, Nishimura S, Nitta Y. (2004). Two additional carbohydrate-binding sites of β-amylase from Bacillus cereus var. mycoides are involved in hydrolysis and raw starch-binding. J Biochem (Tokyo), 135, 355–363.
  • Zhang R, Li CM, Williams LK, Rempel BP, Brayer GD, Withers SG. (2009). Directed “in situ” inhibitor elongation as a strategy to structurally characterize the covalent glycosyl-enzyme intermediate of human pancreatic α-amylase. Biochemistry (Mosc), 48, 10752–10764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.