4,720
Views
521
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobial peptides: key components of the innate immune system

, &
Pages 143-171 | Received 02 Jan 2011, Accepted 02 Jun 2011, Published online: 11 Nov 2011

References

  • Adessi C, Soto C. (2002). Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem, 9, 963–978.
  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jörnvall H, Wigzell H, Gudmundsson GH. (2000). The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood, 96, 3086–3093.
  • Andersson DI, Hughes D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol, 8, 260–271.
  • Andersson E, Rydengård V, Sonesson A, Mörgelin M, Björck L, Schmidtchen A. (2004). Antimicrobial activities of heparin-binding peptides. Eur J Biochem, 271, 1219–1226.
  • Angelova A, Ionov R, Koch MH, Rapp G. (2000). Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. Arch Biochem Biophys, 378, 93–106.
  • Auvynet C, Rosenstein Y. (2009). Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J, 276, 6497–6508.
  • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. (2000). Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol, 1, 113–118.
  • Ayoub M, Scheidegger D. (2006). Peptide drugs, overcoming the challenges, a growing business. Chimica Oggi-Chemistry Today, 24, 46–48.
  • Badria FA, Guirguis AN, Perovic S, Steffen R, Muller WE, Schroder HC. (1998). Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology, 131, 133–143.
  • Bals R, Goldman MJ, Wilson JM. (1998a). Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun, 66, 1225–1232.
  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM. (1998b). Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest, 102, 874–880.
  • Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM. (1999a). Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun, 67, 6084–6089.
  • Bals R, Weiner DJ, Wilson JM. (1999b). The innate immune system in cystic fibrosis lung disease. J Clin Invest, 103, 303–307.
  • Bals R, Lang C, Weiner DJ, Vogelmeier C, Welsch U, Wilson JM. (2001). Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. Clin Diagn Lab Immunol, 8, 370–375.
  • Banerjee A, Pramanik A, Bhattacharjya S, Balaram P. (1996). Omega amino acids in peptide design: incorporation into helices. Biopolymers, 39, 769–777.
  • Bessalle R, Gorea A, Shalit I, Metzger JW, Dass C, Desiderio DM, Fridkin M. (1993). Structure-function studies of amphiphilic antibacterial peptides. J Med Chem, 36, 1203–1209.
  • Bhonsle JB, Venugopal D, Huddler DP, Magill AJ, Hicks RP. (2007). Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem, 50, 6545–6553.
  • Bhutia SK, Maiti TK. (2008). Targeting tumors with peptides from natural sources. Trends Biotechnol, 26, 210–217.
  • Biggs JS, Rosenfeld Y, Shai Y, Olivera BM. (2007). Conolysin-Mt: a conus peptide that disrupts cellular membranes. Biochemistry, 46, 12586–12593.
  • Blondelle SE, Houghten RA. (1992). Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 31, 12688–12694.
  • Bochud PY, Bochud M, Telenti A, Calandra T. (2007). Innate immunogenetics: a tool for exploring new frontiers of host defence. Lancet Infect Dis, 7, 531–542.
  • Boman HG, Nilsson I, Rasmuson B. (1972). Inducible antibacterial defence system in Drosophila. Nature, 237, 232–235.
  • Boman HG. (1981). in Microbial Control of Insects, Mites and Plant Diseases. New York: Academic. 769–784.
  • Boman HG, Agerberth B, Boman A. (1993). Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun, 61, 2978–2984.
  • Boman HG. (1995). Peptide antibiotics and their role in innate immunity. Annu Rev Immunol, 13, 61–92.
  • Boman HG. (2000). Innate immunity and the normal microflora. Immunol Rev, 173, 5–16.
  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D. (2010). Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides, 31, 1957–1965.
  • Bonsen PP, de Haas GH, van Deenen LL. (1967). Synthetic and structural investigations on 3-phosphatidyl-1′-(3′-O-L-lysyl)glycerol. Biochemistry, 6, 1114–1120.
  • Bowdish DM, Davidson DJ, Hancock RE. (2005a). A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci, 6, 35–51.
  • Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. (2005b). Impact of LL-37 on anti-infective immunity. J Leukoc Biol, 77, 451–459.
  • Bowdish DM, Davidson DJ, Scott MG, Hancock RE. (2005c). Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother, 49, 1727–1732.
  • Bowdish DM, Davidson DJ, Hancock RE. (2006). Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol, 306, 27–66.
  • Brogden KA, Ackermann M, McCray PB, Jr., Tack BF. (2003a). Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents, 22, 465–478.
  • Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, Jia HP, Tack BF, McCray PB. (2003b). Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol, 18, 95–99.
  • Brumfitt W, Salton MR, Hamilton-Miller JM. (2002). Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother, 50, 731–734.
  • Bucki R, Leszczynska K, Namiot A, Sokolowski W. (2010). Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz), 58, 15–25.
  • Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ. (2009). Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch Oral Biol, 54, 345–353.
  • Canny G, Levy O, Furuta GT, Narravula-Alipati S, Sisson RB, Serhan CN, Colgan SP. (2002). Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci USA, 99, 3902–3907.
  • Cao Y, Yu RQ, Liu Y, Zhou HX, Song LL, Qiao DR. (2010). Design, Recombinant Expression, and Antibacterial Activity of the Cecropins-Melittin Hybrid Antimicrobial Peptides. Curr Microbiol, 61, 169–175.
  • Carlsson A, Engstrom P, Palva ET, Bennich H. (1991). Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun, 59, 3040–3045.
  • Cassone M, Otvos L Jr. (2010). Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther, 8, 703–716.
  • Chan KS, Carbajal S, Kiguchi K, Clifford J, Sano S, DiGiovanni J. (2004). Epidermal growth factor receptor-mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res, 64, 2382–2389.
  • Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. (1996). Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem, 271, 21808–21813.
  • Chen J, Falla TJ, Liu H, Hurst MA, Fujii CA, Mosca DA, Embree JR, Loury DJ, Radel PA, Cheng Chang C, Gu L, Fiddes JC. (2000). Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Biopolymers, 55, 88–98.
  • Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H. (2005). Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci, 40, 123–132.
  • Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, Saito H, Nagaoka I, Ikeda S, Okumura K, Ogawa H. (2007). Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol, 37, 434–444.
  • Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ. (1996). Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem, 271, 2935–2940.
  • Cho JH, Park CB, Yoon YG, Kim SC. (1998a). Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta, 1408, 67–76.
  • Cho Y, Turner JS, Dinh NN, Lehrer RI. (1998b). Activity of protegrins against yeast-phase Candida albicans. Infect Immun, 66, 2486–2493.
  • Chu KT, Ng TB. (2003). Isolation of a large thaumatin-like antifungal protein from seeds of the Kweilin chestnut Castanopsis chinensis. Biochem Biophys Res Commun, 301, 364–370.
  • Cirioni O, Giacometti A, Ghiselli R, Orlando F, Kamysz W, D’Amato G, Mocchegiani F, Lukasiak J, Silvestri C, Saba V, Scalise G. (2004). Potential therapeutic role of histatin derivative P-113d in experimental rat models of Pseudomonas aeruginosa sepsis. J Infect Dis, 190, 356–364.
  • Cole AM, Weis P, Diamond G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem, 272, 12008–12013.
  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI. (2002). Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci U S A, 99, 1813–1818.
  • Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA. (2000). Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood, 95, 543–550.
  • Costa MM, Dios S, Alonso-Gutierrez J, Romero A, Novoa B, Figueras A. (2009). Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). Dev Comp Immunol, 33, 162–170.
  • Cronan JE. (2003). Bacterial membrane lipids: where do we stand? Annu Rev Microbiol, 57, 203–224.
  • Daher KA, Selsted ME, Lehrer RI. (1986). Direct inactivation of viruses by human granulocyte defensins. J Virol, 60, 1068–1074.
  • Darmoul D, Ouellette AJ. (1996). Positional specificity of defensin gene expression reveals Paneth cell heterogeneity in mouse small intestine. Am J Physiol, 271, 68–74.
  • Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M. (1997). Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett, 403, 208–212.
  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. (2001). Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 501, 146–150.
  • Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M. (2002). General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta, 1558, 171–186.
  • Dathe M, Nikolenko H, Klose J, Bienert M. (2004). Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry, 43, 9140–9150.
  • de Haar SF, Hiemstra PS, van Steenbergen MT, Everts V, Beertsen W. (2006). Role of polymorphonuclear leukocyte-derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun, 74, 5284–5291.
  • De Lucca AJ, Bland JM, Grimm C, Jacks TJ, Cary JW, Jaynes JM, Cleveland TE, Walsh TJ. (1998a). Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Can J Microbiol, 44, 514–520.
  • De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ. (1998b). Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med Mycol, 36, 291–298.
  • De Lucca AJ, Cleveland TE, Wedge DE. (2005). Plant-derived antifungal proteins and peptides. Can J Microbiol, 51, 1001–1014.
  • De Smet K, Contreras R. (2005). Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett, 27, 1337–1347.
  • Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA. (2002). Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem, 277, 35035–35043.
  • Dennison SR, Harris F, Phoenix DA. (2005a). Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion? Protein Pept Lett, 12, 27–29.
  • Dennison SR, Wallace J, Harris F, Phoenix DA. (2005b). Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept Lett, 12, 31–39.
  • Destoumieux D, Munoz M, Bulet P, Bachere E. (2000). Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci, 57, 1260–1271.
  • Dobrzynska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z. (2005). Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem, 276, 113–119.
  • Dodd GT, Mancini G, Lutz B, Luckman SM. (2010). The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci, 30, 7369–7376.
  • Donate F, Juarez JC, Guan X, Shipulina NV, Plunkett ML, Tel-Tsur Z, Shaw DE, Morgan WT, Mazar AP. (2004). Peptides derived from the histidine-proline domain of the histidine-proline-rich glycoprotein bind to tropomyosin and have antiangiogenic and antitumor activities. Cancer Res, 64, 5812–5817.
  • Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL. (2006). The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J, 20, 35–42.
  • Dos Santos Cabrera MP, Arcisio-Miranda M, da Costa LC, de Souza BM, Broggio Costa ST, Palma MS, Ruggiero Neto J, Procopio J. (2009). Interactions of mast cell degranulating peptides with model membranes: a comparative biophysical study. Arch Biochem Biophys, 486, 1–11.
  • Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH. (2002). Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology, 106, 517–525.
  • Durr UH, Sudheendra US, Ramamoorthy A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta, 1758, 1408–1425.
  • Dyer KD, Rosenberg HF. (2006). The RNase a superfamily: generation of diversity and innate host defense. Mol Divers, 10, 585–597.
  • Ehrenstein G, Lecar H. (1977). Electrically gated ionic channels in lipid bilayers. Q Rev Biophys, 10, 1–34.
  • Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P. (1996). Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem, 271, 29537–29544.
  • El Jastimi R, Lafleur M. (1999). Nisin promotes the formation of non-lamellar inverted phases in unsaturated phosphatidylethanolamines. Biochim Biophys Acta, 1418, 97–105.
  • Elsbach P. (1990). Antibiotics from within: antibacterials from human and animal sources. Trends Biotechnol, 8, 26–30.
  • Epand RF, Epand RM, Monaco V, Stoia S, Formaggio F, Crisma M, Toniolo C. (1999). The antimicrobial peptide trichogin and its interaction with phospholipid membranes. Eur J Biochem, 266, 1021–1028.
  • Epand RF, Maloy L, Ramamoorthy A, Epand RM. (2010). Amphipathic helical cationic antimicrobial peptides promote rapid formation of crystalline States in the presence of phosphatidylglycerol: lipid clustering in anionic membranes. Biophys J, 98, 2564–2573.
  • Epand RM, Epand RF. (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta, 1788, 289–294.
  • Fernandes JM, Kemp GD, Molle MG, Smith VJ. (2002). Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem J, 368, 611–620.
  • Frecer V, Ho B, Ding JL. (2004). De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother, 48, 3349–3357.
  • Frecer V. (2006). QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg Med Chem, 14, 6065–6074.
  • Frick IM, Akesson P, Herwald H, Morgelin M, Malmsten M, Nagler DK, Bjorck L. (2006). The contact system–a novel branch of innate immunity generating antibacterial peptides. Embo J, 25, 5569–5578.
  • Fritz JH, Brunner S, Birnstiel ML, Buschle M, Gabain A, Mattner F, Zauner W. (2004). The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine, 22, 3274–3284.
  • Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH. (1997). The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem, 272, 15258–15263.
  • Galgóczy L, Kovács L, CS V. (2010). Defensin-like antifungal proteins secreted by filamentous fungi. Current Research, Technology and Education. Topics in Applied Microbiology and. Microbial Biotechnology. Available at http://www.formatex.info/microbiology2/550–559.pdf
  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. (1985). Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest, 76, 1427–1435.
  • Ganz T, Lehrer RI. (1994). Defensins. Curr Opin Immunol, 6, 584–589.
  • Ganz T, Lehrer RI. (1995). Defensins. Pharmacol Ther, 66, 191–205.
  • Garcia AE, Osapay G, Tran PA, Yuan J, Selsted ME. (2008). Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect Immun, 76, 5883–5891.
  • Garlapati S, Facci M, Polewicz M, Strom S, Babiuk LA, Mutwiri G, Hancock RE, Elliott MR, Gerdts V. (2009). Strategies to link innate and adaptive immunity when designing vaccine adjuvants. Vet Immunol Immunopathol, 128, 184–191.
  • Gazit E, Bach D, Kerr ID, Sansom MS, Chejanovsky N, Shai Y. (1994). The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modelling. Biochem J, 304, 895–902.
  • Gesell J, Zasloff M, Opella SJ. (1997). Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR, 9, 127–135.
  • Giangaspero A, Sandri L, Tossi A. (2001). Amphipathic alpha helical antimicrobial peptides. Eur J Biochem, 268, 5589–5600.
  • Gifford JL, Hunter HN, Vogel HJ. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci, 62, 2588–2598.
  • Gimenez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. (2006). The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem, 14, 6971–6978.
  • Giuliani A, Pirri G, Nicoletto SF. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology 2, 1–33.
  • Glukhov E, Stark M, Burrows LL, Deber CM. (2005). Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem, 280, 33960–33967.
  • Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. (2009). Lactoferrin: structure, function and applications. Int J Antimicrob Agents, 33, 301 e1-8.
  • Goodman M, Zapf C, Rew Y. (2001). New reagents, reactions, and peptidomimetics for drug design. Biopolymers, 60, 229–245.
  • Gordon YJ, Romanowski EG, McDermott AM. (2005). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res, 30, 505–515.
  • Grutkoski PS, Graeber CT, Lim YP, Ayala A, Simms HH. (2003). Alpha-defensin 1 (human neutrophil protein 1) as an antichemotactic agent for human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 47, 2666–2668.
  • Gueguen Y, Bernard R, Julie F, Paulina S, Delphine DG, Franck V, Philippe B, Evelyne B. (2009). Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. Mol Immunol, 46, 516–522.
  • Guichard G, Benkirane N, Zeder-Lutz G, van Regenmortel MH, Briand JP, Muller S. (1994). Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. Proc Natl Acad Sci U S A, 91, 9765–9769.
  • Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. (2000). Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun, 68, 6139–6146.
  • Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95, 189–198.
  • Haest CW, de Gier J, den Kamp JO, Bartels P, van Deenen LL. (1972). Chages in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta, 255, 720–733.
  • Hair PS, Ward MD, Semmes OJ, Foster TJ, Cunnion KM. (2008). Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis, 198, 125–133.
  • Hale JD, Hancock RE. (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther, 5, 951–959.
  • Hancock RE, Lehrer R. (1998). Cationic peptides: a new source of antibiotics. Trends Biotechnol, 16, 82–88.
  • Hancock RE. (2000). Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs, 9, 1723–1729.
  • Hancock RE. (2001). Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 1, 156–164.
  • Hancock RE, Rozek A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett, 206, 143–149.
  • Hancock RE. (2005). Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis, 5, 209–218.
  • Hancock RE, Sahl HG. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 24, 1551–1557.
  • Hancock RE. (2007). The complexities of antibiotic action. Mol Syst Biol, 3, 142.
  • Harder J, Schroder JM. (2002). RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem, 277, 46779–46784.
  • Harris F, Dennison SR, Phoenix DA. (2009). Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci, 10, 585–606.
  • Haupt H, Heimburger N. (1972). Human serum proteins with high affinity for carboxymethylcellulose. I. Isolation of lysozyme, C1q and 2 hitherto unknown -globulins. Hoppe Seylers Z Physiol Chem, 353, 1125–1132.
  • Hazlett L, Wu M. (2011). Defensins in innate immunity. Cell Tissue Res, 343, 175–188.
  • He J, Yarbrough DK, Kreth J, Anderson MH, Shi W, Eckert R. (2010). Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother, 54, 2143–2151.
  • Heimburger N, Haupt H, Kranz T, Baudner S. (1972). Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S- 2 -glycoportein (CM-protein I). Hoppe Seylers Z Physiol Chem, 353, 1133–1140.
  • Heinzelmann M, Mercer-Jones MA, Flodgaard H, Miller FN. (1998). Heparin-binding protein (CAP37) is internalized in monocytes and increases LPS-induced monocyte activation. J Immunol, 160, 5530–5536.
  • Heinzelmann M, Kim E, Hofmeister A, Gordon LE, Platz A, Cheadle WG. (2001). Heparin binding protein (CAP37) differentially modulates endotoxin-induced cytokine production. Int J Surg Investig, 2, 457–466.
  • Hilpert K, Fjell CD, Cherkasov A. (2008). Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. Methods Mol Biol, 494, 127–159.
  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. (1999). Phylogenetic perspectives in innate immunity. Science, 284, 1313–1318.
  • Hoskin DW, Ramamoorthy A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 1778, 357–375.
  • Houston ME, Jr., Kondejewski LH, Karunaratne DN, Gough M, Fidai S, Hodges RS, Hancock RE. (1998). Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J Pept Res, 52, 81–88.
  • Huang HW. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta, 1758, 1292–1302.
  • Huang HW. (2009). Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophys J, 96, 3263–3272.
  • Hughes AL. (1999). Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci, 56, 94–103.
  • Hugli TE. (1990). Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol, 153, 181–208.
  • Hultmark D, Steiner H, Rasmuson T, Boman HG. (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem, 106, 7–16.
  • Imamura M, Wada S, Koizumi N, Kadotani T, Yaoi K, Sato R, Iwahana H. (1999). Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa. Arch Insect Biochem Physiol, 40, 88–98.
  • Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, Becker CL, McLaughlin ML. (1996). De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem, 39, 3107–3113.
  • Jenssen H, Hamill P, Hancock RE. (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19, 491–511.
  • Jenssen H, Fjell CD, Cherkasov A, Hancock RE. (2008). QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci, 14, 110–114.
  • Jeong N, Kim JY, Park SC, Lee JK, Gopal R, Yoo S, Son BK, Hahm JS, Park Y, Hahm KS. (2010). Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis. Biochem Biophys Res Commun, 399, 581–586.
  • Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, Mant CT, Hancock RE, Vasil ML, Netea MG, Hodges RS. (2008). Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des, 72, 483–495.
  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. (1998). Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem, 273, 3718–3724.
  • Jones AL, Hulett MD, Parish CR. (2005a). Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol, 83, 106–118.
  • Jones AL, Poon IK, Hulett MD, Parish CR. (2005b). Histidine-rich glycoprotein specifically binds to necrotic cells via its amino-terminal domain and facilitates necrotic cell phagocytosis. J Biol Chem, 280, 35733–35741.
  • Jones DE, Bevins CL. (1993). Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett, 315, 187–192.
  • Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, Gutsmann T, Hammer MU, Podschun R, Bonvin AM, Leippe M, Bosch TC, Grotzinger J. (2009). Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem, 284, 1896–1905.
  • Juretic D, Vukicevic D, Petrov D, Novkovic M, Bojovic V, Lucic B, Ilic N, Tossi A. (2011). Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J, 40, 371–385.
  • Kacprzyk L, Rydengard V, Morgelin M, Davoudi M, Pasupuleti M, Malmsten M, Schmidtchen A. (2007). Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta, 1768, 2667–2680.
  • Kavanagh K, Dowd S. (2004). Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol, 56, 285–289.
  • Khandelia H, Ipsen JH, Mouritsen OG. (2008). The impact of peptides on lipid membranes. Biochim Biophys Acta, 1778, 1528–1536.
  • Kieber-Emmons T, Murali R, Greene MI. (1997). Therapeutic peptides and peptidomimetics. Curr Opin Biotechnol, 8, 435–441.
  • Kim HJ, Jung JR, Lee SY, Chang IH, Lee TJ, Kim W, Myung SC. (2011). Expression of human beta-defensin-2 in the prostate. BJU Int, 107, 144–149.
  • Kim JM, Jang SA, Yu BJ, Sung BH, Cho JH, Kim SC. (2008). High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage. Appl Microbiol Biotechnol, 78, 123–130.
  • Kim TH, Lee H, Park TG. (2002). Pegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA microspheres. Biomaterials, 23, 2311–2317.
  • Kindrachuk J, Jenssen H, Elliott M, Townsend R, Nijnik A, Lee SF, Gerdts V, Babiuk LA, Halperin SA, Hancock RE. (2009). A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine, 27, 4662–4671.
  • Kjeldsen T, Pettersson AF, Drube L, Kurtzhals P, Jonassen I, Havelund S, Hansen PH, Markussen J. (1998). Secretory expression of human albumin domains in Saccharomyces cerevisiae and their binding of myristic acid and an acylated insulin analogue. Protein Expr Purif, 13, 163–169.
  • Kluver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K. (2005). Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry, 44, 9804–9816.
  • Kobayashi H, Ohta N, Umeda M. (2004). Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida. Int Rev Cytol, 236, 45–99.
  • Koczulla AR, Bals R. (2003). Antimicrobial peptides: current status and therapeutic potential. Drugs, 63, 389–406.
  • Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest, 111, 1665–1672.
  • Koehler MF, Zobel K, Beresini MH, Caris LD, Combs D, Paasch BD, Lazarus RA. (2002). Albumin affinity tags increase peptide half-life in vivo. Bioorg Med Chem Lett, 12, 2883–2886.
  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI. (1993). Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett, 327, 231–236.
  • Kovacs-Nolan J, Latimer L, Landi A, Jenssen H, Hancock RE, Babiuk LA, van Drunen Littel-van den Hurk S. (2009). The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody- and cell-mediated immune responses in mice. Vaccine, 27, 2055–2064.
  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr. (2001). The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry, 40, 3016–3026.
  • Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W. (2002). Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem, 277, 11208–11216.
  • Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M. (2007). The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol, 63, 497–506.
  • Lai Y, Gallo RL. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 30, 131–141.
  • Langham AA, Khandelia H, Schuster B, Waring AJ, Lehrer RI, Kaznessis YN. (2008). Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: predicting experimental toxicity. Peptides, 29, 1085–1093.
  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. (1995). Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun, 63, 1291–1297.
  • Lax R, Michael V. (2006). Are low-priced peptides affordable? Chimica oggi 24, 38–40.
  • Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, Cho JH, Kim SC. (2008). Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett, 271, 47–55.
  • Lehrer RI, Lichtenstein AK, Ganz T. (1993). Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol, 11, 105–128.
  • Lehrer RI, Ganz T. (2002). Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol, 9, 18–22.
  • Lejon T, Stiberg T, Strom MB, Svendsen JS. (2004). Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins. J Pept Sci, 10, 329–335.
  • Li C, Haug T, Styrvold OB, Jorgensen TO, Stensvag K. (2008). Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol, 32, 1430–1440.
  • Li JF, Zhang J, Zhang Z, Ma HW, Zhang JX, Zhang SQ. (2010). Production of Bioactive Human Beta-Defensin-4 in Escherichia coli using SUMO Fusion Partner. Protein J, 29, 314–319.
  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. (2007a). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol, 66, 1136–1147.
  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M. (2007b). Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A, 104, 9469–9474.
  • Lien S, Lowman HB. (2003). Therapeutic peptides. Trends Biotechnol, 21, 556–562.
  • Lin KH, Chuang YC, Lee SH, Yu WL. (2010). In vitro synergistic antimicrobial effect of imipenem and colistin against an isolate of multidrug-resistant Enterobacter cloacae. J Microbiol Immunol Infect, 43, 317–322.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv Drug Deliv Rev 46, 3–26.
  • Liu L, Zhao C, Heng HH, Ganz T. (1997). The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics, 43, 316–320.
  • Liu YQ, Sun ZJ, Wang C, Li SJ, Liu YZ. (2004). Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim Biophys Sin (Shanghai), 36, 297–302.
  • Lohner K, Sevcsik E, Pabst G. (2008). Liposome-based biomembrane mimetic systems: Implications for lipid-peptide interactions. Ed. by A L-L. Amsterdam: Elsevier.
  • Ludtke S, He K, Huang H. (1995). Membrane thinning caused by magainin 2. Biochemistry, 34, 16764–16769.
  • Lugtenberg EJ, Peters R. (1976). Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta, 441, 38–47.
  • Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L. (2008). Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. Faseb J, 22, 1817–1828.
  • Ma DY, Liu SW, Han ZX, Li YJ, Shan AS. (2008). Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Expr Purif, 58, 284–291.
  • Maisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D, Campa M, Batoni G. (2008). Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3. Peptides, 29, 1–6.
  • Makovitzki A, Shai Y. (2005). pH-dependent antifungal lipopeptides and their plausible mode of action. Biochemistry, 44, 9775–9784.
  • Malm J, Sorensen O, Persson T, Frohm-Nilsson M, Johansson B, Bjartell A, Lilja H, Stahle-Backdahl M, Borregaard N, Egesten A. (2000). The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun, 68, 4297–4302.
  • Malmsten M, Davoudi M, Walse B, Rydengard V, Pasupuleti M, Morgelin M, Schmidtchen A. (2007). Antimicrobial peptides derived from growth factors. Growth Factors, 25, 60–70.
  • Marr AK, Gooderham WJ, Hancock RE. (2006). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol, 6, 468–472.
  • Marshall SH. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 6 http://www.ejbiotechnology.info/content/vol6/issue3/full/1.
  • Matsunaga S, Fusetani N, Konosu S. (1985). Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. J Nat Prod, 48, 236–241.
  • Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K. (1991). Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta, 1063, 162–170.
  • Matsuzaki K, Yoneyama S, Fujii N, Miyajima K, Yamada K, Kirino Y, Anzai K. (1997). Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry, 36, 9799–9806.
  • Matsuzaki K. (1999). Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta, 1462, 1–10.
  • McDermott AM. (2009). The role of antimicrobial peptides at the ocular surface. Ophthalmic Res, 41, 60–75.
  • Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM. (2005). Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J, 89, 4043–4050.
  • Mehrnejad F, Naderi-Manesh H, Ranjbar B, Maroufi B, Asoodeh A, Doustdar F. (2008). PCR-based gene synthesis, molecular cloning, high level expression, purification, and characterization of novel antimicrobial peptide, brevinin-2R, in Escherichia coli. Appl Biochem Biotechnol, 149, 109–118.
  • Melo MN, Ferre R, Castanho MA. (2009). Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 7, 245–250.
  • Meyer-Hoffert U, Schwarz T, Schroder JM, Glaser R. (2010). Increased expression of human beta-defensin 3 in mollusca contagiosum. Clin Exp Dermatol, 35, 190–192.
  • Mihajlovic M, Lazaridis T. (2010a). Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta, 1798, 1494–1502.
  • Mihajlovic M, Lazaridis T. (2010b). Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta, 1798, 1485–1493.
  • Miyashita M, Sakai A, Matsushita N, Hanai Y, Nakagawa Y, Miyagawa H. (2010). A novel amphipathic linear peptide with both insect toxicity and antimicrobial activity from the venom of the scorpion Isometrus maculatus. Biosci Biotechnol Biochem, 74, 364–369.
  • Mohammed R, Peng J, Kelly M, Hamann MT. (2006). Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J Nat Prod, 69, 1739–1744.
  • Mookherjee N, Hancock RE. (2007). Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci, 64, 922–933.
  • Moon JY, Henzler-Wildman KA, Ramamoorthy A. (2006). Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim Biophys Acta, 1758, 1351–1358.
  • Moon KE, Gorski JP, Hugli TE. (1981). Complete primary structure of human C4a anaphylatoxin. J Biol Chem, 256, 8685–8692.
  • Mueller GP, Driscoll WJ. (2008). alpha-Amidated peptides: approaches for analysis. Methods Mol Biol, 446, 67–84.
  • Murakami Y, Takeshita T, Shizukuishi S, Tsunemitsu A, Aimoto S. (1990). Inhibitory effects of synthetic histidine-rich peptides on haemagglutination by Bacteroides gingivalis 381. Arch Oral Biol, 35, 775–777.
  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 437, 975–980.
  • Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. (2001). Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol, 167, 3329–3338.
  • Nair DG, Fry BG, Alewood P, Kumar PP, Kini RM. (2007). Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem J, 402, 93–104.
  • Namjoshi S, Caccetta R, Benson HA. (2008). Skin peptides: biological activity and therapeutic opportunities. J Pharm Sci, 97, 2524–2542.
  • Narayanan S, Miller WL, McDermott AM. (2003). Expression of human beta-defensins in conjunctival epithelium: relevance to dry eye disease. Invest Ophthalmol Vis Sci, 44, 3795–3801.
  • Naurato N, Wong P, Lu Y, Wroblewski K, Bennick A. (1999). Interaction of tannin with human salivary histatins. J Agric Food Chem, 47, 2229–2234.
  • Nguyen LT, Schibli DJ, Vogel HJ. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci, 11, 379–389.
  • Nijnik A, Hancock RE. (2009). The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol, 16, 41–47.
  • Niyonsaba F, Nagaoka I, Ogawa H. (2006). Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. Crit Rev Immunol, 26, 545–576.
  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. (2007). Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol, 127, 594–604.
  • Nizet V. (2006). Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol, 8, 11–26.
  • Nizet V. (2007). Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol, 120, 13–22.
  • Noga EJ, Silphaduang U. (2003). Piscidins: a novel family of peptide antibiotics from fish. Drug News Perspect, 16, 87–92.
  • Nordahl EA, Rydengård V, Nyberg P, Nitsche DP, Mörgelin M, Malmsten M, Björck L, Schmidtchen A. (2004). Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci U S A, 101, 16879–16884.
  • Nordahl EA, Rydengård V, Mörgelin M, Schmidtchen A. (2005). Domain 5 of high molecular weight kininogen is antibacterial. J Biol Chem, 280, 34832–34839.
  • Nyberg P, Rasmussen M, Bjorck L. (2004). alpha2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem, 279, 52820–52823.
  • Ohlsen K, Dandekar G, Schwarz R, Dandekar T. (2008). New trends in pharmacogenomic strategies against resistance development in microbial infections. Pharmacogenomics, 9, 1711–1723.
  • Olsson AK, Larsson H, Dixelius J, Johansson I, Lee C, Oellig C, Björk I, Claesson-Welsh L. (2004). A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res, 64, 599–605.
  • Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF. (1988). Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem, 263, 7472–7477.
  • Oren Z, Hong J, Shai Y. (1997). A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem, 272, 14643–14649.
  • Orivel J, Redeker V, Le Caer JP, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Dejean A, Rossier J. (2001). Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J Biol Chem, 276, 17823–17829.
  • Ostberg N, Kaznessis Y. (2005). Protegrin structure-activity relationships: using homology models of synthetic sequences to determine structural characteristics important for activity. Peptides, 26, 197–206.
  • Ostresh JM, Blondelle SE, Dorner B, Houghten RA. (1996). Generation and use of nonsupport-bound peptide and peptidomimetic combinatorial libraries. Methods Enzymol, 267, 220–234.
  • Otto M. (2006). Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol, 306, 251–258.
  • Otvos L, Jr., O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. (2000). Interaction between heat shock proteins and antimicrobial peptides. Biochemistry, 39, 14150–14159.
  • Oudhoff MJ, Bolscher JG, Nazmi K, Kalay H, van ‘,t Hof W, Amerongen AV, Veerman EC. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. Faseb J, 22, 3805–3812.
  • Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men’shenin AV, Kokryakov VN. (2006). Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun, 348, 514–523.
  • Pan W, Liu X, Ge F, Han J, Zheng T. (2004). Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. J Biochem, 135, 297–304.
  • Panavas T, Sanders C, Butt TR. (2009). SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol, 497, 303–317.
  • Papanastasiou EA, Hua Q, Sandouk A, Son UH, Christenson AJ, Van Hoek ML, Bishop BM. (2009). Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3. APMIS, 117, 492–499.
  • Papareddy P, Kalle M, Kasetty G, Morgelin M, Rydengard V, Albiger B, Lundqvist K, Malmsten M, Schmidtchen A. (2010a). C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules. J Biol Chem, 285, 28387–28398.
  • Papareddy P, Rydengard V, Pasupuleti M, Walse B, Morgelin M, Chalupka A, Malmsten M, Schmidtchen A. (2010b). Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog, 6, e1000857.
  • Park CB, Kim HS, Kim SC. (1998). Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun, 244, 253–257.
  • Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC. (2004). Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem, 279, 13896–901.
  • Pasupuleti M, Walse B, Nordahl EA, Morgelin M, Malmsten M, Schmidtchen A. (2007). Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem, 282, 2520–2528.
  • Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A. (2008). Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry, 47, 9057–9070.
  • Pasupuleti M, Chalupka A, Morgelin M, Schmidtchen A, Malmsten M. (2009a). Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochim Biophys Acta, 1790, 800–808.
  • Pasupuleti M, Davoudi M, Malmsten M, Schmidtchen A. (2009b). Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase. BMC Res Notes, 2, 136.
  • Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sorensen OE, Schmidtchen A. (2009c). Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS ONE, 4, e7358.
  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M. (2009d). End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One, 4, e5285.
  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. (2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother, 46, 605–614.
  • Perron GG, Zasloff M, Bell G. (2006). Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci, 273, 251–256.
  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA. (2001). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med, 193, 1067–1076.
  • Peschel A. (2002). How do bacteria resist human antimicrobial peptides? Trends Microbiol, 10, 179–186.
  • Peschel A, Sahl HG. (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4, 529–536.
  • Peters T Jr. (1985). Serum albumin. Adv Protein Chem, 37, 161–245.
  • Pokorny A, Almeida PF. (2004). Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry, 43, 8846–8857.
  • Potempa J, Pike RN. (2009). Corruption of innate immunity by bacterial proteases. J Innate Immun, 1, 70–87.
  • Powers JP, Hancock RE. (2003). The relationship between peptide structure and antibacterial activity. Peptides, 24, 1681–1691.
  • Pranting M, Negrea A, Rhen M, Andersson DI. (2008). Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother, 52, 2734–2741.
  • Pranting M, Andersson DI. (2010). Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2. J Antimicrob Chemother, 65, 876–887.
  • Prasad R, Ghannoum AM. (1996). Lipids of Pathogenic Fungi CRC press
  • Qian S, Wang W, Yang L, Huang HW. (2008). Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. Biophys J, 94, 3512–3522.
  • Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol, 22, 877–882.
  • Qu XD, Harwig SS, Shafer WM, Lehrer RI. (1997). Protegrin structure and activity against Neisseria gonorrhoeae. Infect Immun, 65, 636–639.
  • Rao AG. (1999). Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys, 361, 127–34.
  • Rapaport D, Shai Y. (1991). Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem, 266, 23769–23775.
  • Rasmussen PB, Bjorn S, Hastrup S, Nielsen PF, Norris K, Thim L, Wiberg FC, Flodgaard H. (1996). Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation-enhancing LPS-induced cytokine release from monocytes. FEBS Lett, 390, 109–112.
  • Reddy KV, Yedery RD, Aranha C. (2004). Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 24, 536–547.
  • Renye JA, Jr., Somkuti GA. (2008). Cloning of milk-derived bioactive peptides in Streptococcus thermophilus. Biotechnol Lett, 30, 723–730.
  • Rijnkels M, Elnitski L, Miller W, Rosen JM. (2003). Multispecies comparative analysis of a mammalian-specific genomic domain encoding secretory proteins. Genomics, 82, 417–432.
  • Ringstad L, Andersson Nordahl E, Schmidtchen A, Malmsten M. (2007). Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21. Biophys J, 92, 87–98.
  • Ringstad L, Protopapa E, Lindholm-Sethson B, Schmidtchen A, Nelson A, Malmsten M. (2008). An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers. Langmuir, 24, 208–216.
  • Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, Torres M, Sada E. (2008). Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun, 76, 935–941.
  • Rodrigues EG, Dobroff AS, Taborda CP, Travassos LR. (2009). Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc, 81, 503–520.
  • Rodziewicz-Motowidlo S, Mickiewicz B, Greber K, Sikorska E, Szultka L, Kamysz E, Kamysz W. (2010). Antimicrobial and conformational studies of the active and inactive analogues of the protegrin-1 peptide. Febs J, 277, 1010–1022.
  • Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML. (2006). A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem, 281, 28565–28574.
  • Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M, Buxton DK, Oppenheim FG, Friden P. (2001). Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother, 45, 1367–1373.
  • Rozek A, Powers JP, Friedrich CL, Hancock RE. (2003). Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry, 42, 14130–14138.
  • Rydengard V, Olsson AK, Morgelin M, Schmidtchen A. (2007). Histidine-rich glycoprotein exerts antibacterial activity. Febs J, 274, 377–389.
  • Rydengard V, Shannon O, Lundqvist K, Kacprzyk L, Chalupka A, Olsson AK, Morgelin M, Jahnen-Dechent W, Malmsten M, Schmidtchen A. (2008). Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog, 4, e1000116.
  • Sabatini LM, Azen EA. (1989). Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). Biochem Biophys Res Commun, 160, 495–502.
  • Sabatini LM, Warner TF, Saitoh E, Azen EA. (1989). Tissue distribution of RNAs for cystatins, histatins, statherin, and proline-rich salivary proteins in humans and macaques. J Dent Res, 68, 1138–1145.
  • Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata M, Iwanaga S. (1995). A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem, 117, 1131–1137.
  • Salyers AA, Amabile-Cuevas CF. (1997). Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother, 41, 2321–2325.
  • Sambhara S, Lehrer RI. (2007). The innate immune system: a repository for future drugs? Expert Rev Anti Infect Ther, 5, 1–5.
  • Sansom MS. (1993). Alamethicin and related peptaibols–model ion channels. Eur Biophys J, 22, 105–124.
  • Sawa T, Kurahashi K, Ohara M, Gropper MA, Doshi V, Larrick JW, Wiener-Kronish JP. (1998). Evaluation of antimicrobial and lipopolysaccharide-neutralizing effects of a synthetic CAP18 fragment against Pseudomonas aeruginosa in a mouse model. Antimicrob Agents Chemother, 42, 3269–3275.
  • Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C. (2001). Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol, 2, 1133–1137.
  • Schmidtchen A, Frick IM, Björck L. (2001a). Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol, 39, 708–713.
  • Schmidtchen A, Wolff H, Hansson C. (2001b). Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm Venereol, 81, 406–409.
  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. (2002). Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol, 46, 157–168.
  • Schmidtchen A, Holst E, Tapper H, Bjorck L. (2003). Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog, 34, 47–55.
  • Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M. (2009). Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem, 284, 17584–17594.
  • Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC. (2005). Human defensins. J Mol Med, 83, 587–595.
  • Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr. (2002). Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A, 99, 2129–2133.
  • Schweizer F. (2009). Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol, 625, 190–194.
  • Scott MG, Hancock RE. (2000). Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol, 20, 407–431.
  • Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE. (2000a). An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol, 165, 3358–3365.
  • Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR. (2000b). Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol, 164, 549–553.
  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol, 169, 3883–3891.
  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. (1985). Primary structures of three human neutrophil defensins. J Clin Invest, 76, 1436–1439.
  • Selsted ME, Ouellette AJ. (2005). Mammalian defensins in the antimicrobial immune response. Nat Immunol, 6, 551–557.
  • Sewald N, Jakubke HD. (2002). Peptides: Chemistry and Biology edn First Edition: Wiley-VCH.
  • Shafer WM, Bowdish D, Davidson D, Hancock R. (2006). Immunomodulatory Properties of Defensins and Cathelicidins. In: Shafer WM, ed. Antimicrobial Peptides and Human Disease. Berlin Heidelberg: Springer, 27–66.
  • Shai Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers, 66, 236–248.
  • Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J, Bals R. (2005). Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol, 289, L842–848.
  • Shen Y, Ai HX, Song R, Liang ZN, Li JF, Zhang SQ. (2010). Expression and purification of moricin CM4 and human beta-defensins 4 in Escherichia coli using a new technology. Microbiol Res, 165, 713–718.
  • Shiomi K, Nakazato M, Ihi T, Kangawa K, Matsuo H, Matsukura S. (1993). Establishment of radioimmunoassay for human neutrophil peptides and their increases in plasma and neutrophil in infection. Biochem Biophys Res Commun, 195, 1336–1344.
  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J. (2004). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother, 48, 4673–4679.
  • Silvestro L, Gupta K, Weiser JN, Axelsen PH. (1997). The concentration-dependent membrane activity of cecropin A. Biochemistry, 36, 11452–11460.
  • Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB Jr. (1998). Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA, 95, 14961–14966.
  • Singh PK, Tack BF, McCray PB, Jr., Welsh MJ. (2000). Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol, 279, L799–805.
  • Sitaram N, Nagaraj R. (1999). Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta, 1462, 29–54.
  • Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M. (1996). Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem, 271, 28375–28381.
  • Solstad T, Larsen AN, Seppola M, Jorgensen TO. (2008). Identification, cloning and expression analysis of a hepcidin cDNA of the Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol, 25, 298–310.
  • Sorensen OE, Gram L, Johnsen AH, Andersson E, Bangsboll S, Tjabringa GS, Hiemstra PS, Malm J, Egesten A, Borregaard N. (2003). Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem, 278, 28540–28546.
  • Sorensen OE, Borregaard N, Cole AM. (2008). Antimicrobial peptides in innate immune responses. Contrib Microbiol, 15, 61–77.
  • Sörensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N. (2001). Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 97, 3951–3959.
  • Sparkes RS, Kronenberg M, Heinzmann C, Daher KA, Klisak I, Ganz T, Mohandas T. (1989). Assignment of defensin gene(s) to human chromosome 8p23. Genomics, 5, 240–244.
  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292, 246–248.
  • Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. (2009). Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother, 53, 593–602.
  • Subbalakshmi C, Sitaram N. (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett, 160, 91–96.
  • Sugiarto H, Yu PL. (2006). Identification of three novel ostricacins: an update on the phylogenetic perspective of beta-defensins. Int J Antimicrob Agents, 27, 229–235.
  • Sugiyama K. (1993). Anti-lipopolysaccharide activity of histatins, peptides from human saliva. Experientia, 49, 1095–1097.
  • Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR. (2005). Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry, 44, 14152–14158.
  • Taboureau O, Olsen OH, Nielsen JD, Raventos D, Mygind PH, Kristensen HH. (2006). Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chem Biol Drug Des, 68, 48–57.
  • Takahashi D, Shukla SK, Prakash O, Zhang G. (2010). Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 92, 1236–1241.
  • Tamamura H, Murakami T, Horiuchi S, Sugihara K, Otaka A, Takada W, Ibuka T, Waki M, Yamamoto N, Fujii N. (1995). Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull (Tokyo), 43, 853–858.
  • Tang YQ, Yuan J, Miller CJ, Selsted ME. (1999). Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of alpha-defensins from rhesus macaque leukocytes. Infect Immun, 67, 6139–6144.
  • Tasiemski A, Schikorski D, Le Marrec-Croq F, Pontoire-Van Camp C, Boidin-Wichlacz C, Sautiere PE. (2007). Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol, 31, 749–762.
  • Territo MC, Ganz T, Selsted ME, Lehrer R. (1989). Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest, 84, 2017–2020.
  • Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. (2010). CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res, 38, D774–780.
  • Thomma BP, Cammue BP, Thevissen K. (2002). Plant defensins. Planta, 216, 193–202.
  • Tian C, Gao B, Fang Q, Ye G, Zhu S. (2010). Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics, 11, 187.
  • Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K. (2005). Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol, 175, 4662–4668.
  • Tomasinsig L, Zanetti M. (2005). The cathelicidins – structure, function and evolution. Curr Protein Pept Sci, 6, 23–34.
  • Torrent M, Andreu D, Nogues VM, Boix E. (2011). Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS ONE, 6, e16968.
  • Tossi A, Scocchi M, Skerlavaj B, Gennaro R. (1994). Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett, 339, 108–112.
  • Tossi A, Sandri L, Giangaspero A. (2000). Amphipathic, alpha-helical antimicrobial peptides. Biopolymers, 55, 4–30.
  • Tran D, Tran P, Roberts K, Osapay G, Schaal J, Ouellette A, Selsted ME. (2008). Microbicidal properties and cytocidal selectivity of Rhesus macaque theta defensins. Antimicrob Agents Chemother, 52, 944–953.
  • Tsai H, Bobek LA. (1998). Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med, 9, 480–497.
  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. (1998). Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother, 42, 2206–2214.
  • Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP. (1995). Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry, 34, 4393–4401.
  • Uematsu N, Matsuzaki K. (2000). Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J, 79, 2075–2083.
  • Ueno S, Kusaka K, Tamada Y, Zhang H, Minaba M, Kato Y. (2010). An enhancer peptide for membrane-disrupting antimicrobial peptides. BMC Microbiol, 10, 46.
  • Ullal AJ, Litaker RW, Noga EJ. (2008). Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev Comp Immunol, 32, 1301–1312.
  • Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C. (2003). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry, 42, 11417–11426.
  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. (1991). Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res, 51, 3062–3066.
  • Uzzell T, Stolzenberg ED, Shinnar AE, Zasloff M. (2003). Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 24, 1655–1667.
  • Valenti P, Antonini G. (2005). Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci, 62, 2576–2587.
  • van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. (2001). Antimicrobial peptides: properties and applicability. Biol Chem, 382, 597–619.
  • van der Schaft DW, Toebes EA, Haseman JR, Mayo KH, Griffioen AW. (2000). Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood, 96, 176–181.
  • van Dijk A, Veldhuizen EJ, van Asten AJ, Haagsman HP. (2005). CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet Immunol Immunopathol, 106, 321–327.
  • Viejo-Diaz M, Andres MT, Fierro JF. (2005). Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Antimicrob Agents Chemother, 49, 2583–2588.
  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M. (2004a). A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem, 279, 54881–54886.
  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. (2004b). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol, 6, 269–275.
  • Wang G, Li X, Wang Z. (2009a). APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res, 37, D933–937.
  • Wang P, Bang JK, Kim HJ, Kim JK, Kim Y, Shin SY. (2009b). Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides, 30, 2144–2149.
  • Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R. (2008). Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE, 3, e3217.
  • Wang Z, Wang G. (2004). APD: the Antimicrobial Peptide Database. Nucleic Acids Res, 32, D590–592.
  • Welling MM, Hiemstra PS, van den Barselaar MT, Paulusma-Annema A, Nibbering PH, Pauwels EK, Calame W. (1998). Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest, 102, 1583–1590.
  • Wessolowski A, Bienert M, Dathe M. (2004). Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization. J Pept Res, 64, 159–169.
  • Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M. (1997). Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry, 36, 12869–12880.
  • Wiesner J, Vilcinskas A. (2010). Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 1, 440–464.
  • Willey JM, van der Donk WA. (2007). Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol, 61, 477–501.
  • Wu Y, He K, Ludtke SJ, Huang HW. (1995). X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J, 68, 2361–2369.
  • Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W. (2003). Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci U S A, 100, 8880–8885.
  • Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE, Zhang G. (2006). Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem, 281, 2858–2867.
  • Xu L, Lal K, Pollock JJ. (1992). Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva. Oral Microbiol Immunol, 7, 127–128.
  • Yan Q, Bennick A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochem J, 311 (Pt 1), 341–347.
  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. (2004a). Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol, 22, 181–215.
  • Yang L, Weiss TM, Lehrer RI, Huang HW. (2000). Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J, 79, 2002–2009.
  • Yang WH, Zhang WC, Lu XM, Jiang GS, Gao PJ. (2009). Characterization of a novel antibacterial glycopeptide produced by Penicillium sp. M03. Lett Appl Microbiol, 48, 393–397.
  • Yang YH, Zheng GG, Li G, Zhang XJ, Cao ZY, Rao Q, Wu KF. (2004b). Expression of bioactive recombinant GSLL-39, a variant of human antimicrobial peptide LL-37, in Escherichia coli. Protein Expr Purif, 37, 229–235.
  • Yeaman MR, Yount NY. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 55, 27–55.
  • Yount NY, Yeaman MR. (2005). Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett, 12, 49–67.
  • Yount NY, Bayer AS, Xiong YQ, Yeaman MR. (2006). Advances in antimicrobial peptide immunobiology. Biopolymers, 84, 435–458.
  • Yount NY, Yeaman MR. (2006). Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim Biophys Acta, 1758, 1373–1386.
  • Zanetti M, Gennaro R, Romeo D. (1995). Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett, 374, 1–5.
  • Zanetti M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol, 75, 39–48.
  • Zasloff M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A, 84, 5449–5453.
  • Zasloff M. (1992). Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol, 4, 3–7.
  • Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.
  • Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S, Crovella S, Tossi A. (2006). Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem, 281, 19861–19871.
  • Zeya HI, Spitznagel JK. (1963). Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification. Science, 142, 1085–7.
  • Zeya HI, Spitznagel JK. (1966). Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities. J Bacteriol, 91, 750–754.
  • Zhang J, Dyer KD, Rosenberg HF. (2003). Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res, 31, 602–607.
  • Zhang L, Scott MG, Yan H, Mayer LD, Hancock RE. (2000). Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry, 39, 14504–14514.
  • Zhang L, Rozek A, Hancock RE. (2001). Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem, 276, 35714–35722.
  • Zhang MQ, Wilkinson B. (2007). Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol, 18, 478–488.
  • Zhao H: Mode of action of antimicrobial peptides [Academic dissertation]. Helsinki: University of Helsinki: 2003.
  • Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, Zhang Y. (2008). Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides, 29, 1685–1691.
  • Zipfel PF, Reuter M. (2009). Complement Activation Products C3a and C4a as Endogenous Antimicrobial Peptides. International Journal of Peptide Research and Therapeutics, 15, 87–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.