2,039
Views
138
CrossRef citations to date
0
Altmetric
Review Article

Enzyme research and applications in biotechnological intensification of biogas production

Pages 172-186 | Received 19 Nov 2010, Accepted 06 Jun 2011, Published online: 19 Aug 2011

References

  • Ahuja SK, Ferreira GM, Moreira AR. (2004). Utilisation of enzymes for environmental applications. Crit Rev Biotechnol, 24, 125–154.
  • Aitken MD. (1993). Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J, 52, B49–B58.
  • Akao T, Mizuki E, Saito H, Okumura S, Murao S. (1992). The methane fermentation of Citrus unshu peel pretreated with fungus enzymes. Bioresource Technol, 41, 35–39.
  • Amaral AL, Pereira MA, da Motta M, Pons MN, Mota M, Pereira EC, Alves MM. (2004). Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: II. Application to a granule deterioration process triggered by contact with oleic acid. Biotechnol Bioeng, 87, 194–199.
  • Angelidaki I, Ahring BK. (1992). Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl Microb Biotechnol, 37, 808–812.
  • Angelidaki I, Ahring BK. (2000). Methods of increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol, 41, 189–194.
  • Attar Y, Mhetre ST, Shawale MD. (1998). Biogas production enhancement by cellulolytic strains of Actinomycetes. Biogas Forum, I 72, 11–15.
  • Ayol A. (2005). Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-I: performance evaluations. Proc Biochem, 40, 2457–2434.
  • Bagi Z, Acs N, Balint KL, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL. (2007). Biotechnological intensification of biogas production. Appl Microbiol Biotechnol, 76, 473–482.
  • Bisaria R, Madan M, Mukhopadhyay SN. (1983). Production of biogas from residues from mushroom cultivation. Biotechnol Lett, 5, 811–812.
  • Bruni E, Jensen AP, Angelidaki I. (2010). Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol, 101, 8713–8717.
  • Cadoret A, Conrad A, Block J-C. (2002). Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme Microbial Technol, 31, 179–186.
  • Cammarota MC, Teixeira GA, Freire DMG. (2001). Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents. Biotechnol Lett, 23, 1501–1595.
  • Cammarota MC, Freire DMG. (2006). A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol, 97, 2195–2210.
  • Cavaleiro AJ, Pereira MA, Alves M. (2008). Enhancement of methane production from long chain fatty acid based effluents. Bioresour Technol, 99, 4086–4095.
  • Cirne DG. (2006). Evaluation of biological strategies to enhance hydrolysis during anaerobic digestion of complex waste. PhD thesis. Department of Biotechnology, Lund University. swepub:oai:lup.lub.lu.se:546144.
  • Cirne DG, Bjornsson L, Alves M, Mattiasson B. (2006). Effects of bioaugmentation on anaerobic digestion of lipid-rich waste. J Chem Technol Biotechnol, 81, 1745–1752.
  • Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B. (2007). Anaerobic digestion of lipid-rich waste− effect of lipid concentration. Renew Energ, 32, 965–975.
  • Confer DR, Logan BE. (1998). Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures. Wat Res, 32, 31–38.
  • Cui R, Jahng D. (2006). Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge. Biotechnol Lett, 28, 531–538.
  • Davidsson Å, Wawrzynczyk J, Norrlöw O, La Cour Jansen J. (2007). Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge. J Residuals Sci Technol, 4, 1–7.
  • Demirbas A. (2008). Products from lignocellulosic materials via degradation processes. Energy Sources Part A, 30, 27–37.
  • Eastman JA, Fergusen JF. (1981). Solubilisation of particulate organic carbon during the acid phase of anaerobic digestion. J SPCF, 53, 352–366.
  • Fernandes TV, Klaasse Bos GJ, Zeeman G, Sanders JP, van Lier JB. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour Technol, 100, 2575–2579.
  • Fernandez A, Sanchez A, Font X. (2005). Anaerobic co-digestion of simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem Bioeng J, 26, 22–28.
  • Frolund B, Palmgren R, Keiding K, Nielsen P. (1996). Extraction of extracellular polymers from activated sludge using a cation ion exchange resin. Water Res, 30, 1749–1758.
  • Gannoun H, Boullagui H, Okbi A, Sayadi S, Hamdi M. (2009). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in upflow anaerobic filter. J Hazard Mat, 170, 263–271.
  • Geeta GS, Suvarna CV, Jagdeesh KS. (1994). Enhanced methane production by sugarcane trash pretreated with Phanerochaete chrysosporium. J Microbiol Biotechnol, 9, 113–117.
  • Gerhardt M, Pelenc V, Bauml M. (2007). Application of hydrolytic enzymes in the agricultural biogas production: Results from practical applications in Germany. Biotech J, 2, 1481–1484.
  • Gianfreda L, Rao MA. (2004). Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol, 35, 339–354.
  • Goel R, Mino T, Satoh H, Matsuo T. (1998). Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions. Water Sci Technol, 37, 335–343.
  • Gossett JM, Belser RL. (1982). Anaerobic digestion of waste activated sludge. J Environ Eng ASCE, 108, 1101–1120.
  • Guedon E, Desvaux M, Petitdemange H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol, 68, 53–58.
  • Gumisiriza R, Mshandete AM, Rubindamayugi MST, Kansiime F, Kivaisi AK. (2009). Enhancement of anaerobic digestion of Nile perch fish processing wastewater. Afri J Biotechnol, 8, 328–333.
  • Gujer W, Zehnder AJB. (1983). Conversion processes in anaerobic digestion. Water Sci Technol, 15, 127–167.
  • Hanaki K, Matsuo T, Nagase M. (1981). Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol Bioengin, 23, 1591–1610.
  • Hendriks ATWM, Zeeman G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100, 10–18.
  • Higgins G, Swartzbaugh J. (1986). Enzyme addition to the anaerobic digestion of municipal wastewater primary sludge. USEPA Water Engineering Research Laboratory, Office of Research and Development. EPA/600/2-86/084, Cincinnati, OH.
  • Janin S, Lala AK, Bhatia SK, Kudchadker AP. (1992). Modelling of hydrolysis controlled anaerobic digestion. J Chem Technol Biotechnol, 53, 337–344.
  • Jeganathan J, Nakhla G, Bassi A. (2007). Hydrolytic pretreatment of oily wastewater by immobilized lipase. J Hazard Mat, 145, 127–135.
  • Jin Y, Hu Z, Wen Z. (2009). Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Res, 43, 3493–3502.
  • Jones KL, Rees JF, Grainger JM. (1983). Methane generation and microbial activity in a domestic refuse landfill site. Eur J Appl Microbiol Biotechnol, 18, 242–245.
  • Karam J, Nicell JA. (1997). Potential applications of enzymes in waste treatment− a review. J. Chem. Technol. Biotechnol, 60, 141–153.
  • Kim SH, Han SK, Shin HS. (2004). Two-phase anaerobic treatment system for fat-containing wastewater. J Chem Technol Biotechnol, 79, 63–71.
  • Lagerkvist A, Chen H. (1993). Control of two-step anaerobic digestion of municipal solid waste by enzyme addition. Water Sci. Technol, 27, 47–56.
  • Leal MCMR, Freire DMG, Cammarota MC, SantAnna Jr GL. (2006). Effects of enzymatic hydrolysis on anaerobic treatment of dairy wastewater. Process Biochem, 41, 1173–1178.
  • Lettinga G. (2001). Digestion and degradation, air for life. Water Sci Technol, 44, 157–176.
  • Lema JM, Omil F. (2001). Anaerobic treatment: a key technology for sustainable management of wastes in Europe. Water Sci Technol 44, 133–140.
  • Lissens G, Verstraete W, Albrecht T, Brunner G, Creuly C, Seon J, Dussap G, and Lasseur C. (2004). Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes. Biodegrad, 15, 173–183.
  • Luste S, Luostarinen S, Sillanpaa M. (2009). Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J Hazardous Mater, 164, 247–255.
  • Masse L, Masse DI, Kennedy KJ. (2003). Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochem, 38, 1365–1372.
  • Masse L, Kennedy KJ, Chou SP. (2001). Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresor Technol, 77, 145–155.
  • Masse L, Masse DI, Kennedy KJ, Chou SP. (2001a). Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion. Proceedings of the 9th World Congress on Anaerobic Digestion, Antwerpen, Belgium 1, 55–60.
  • Matsumoto M, Ohashi K. (2003). Effect of immobilization on thermostability of lipase from Candida rugosa. 14, 75–77.
  • Mayhew ME, Le MS, Ratcliff R. (2002). A novel approach to pathogen reduction in biosolids: the enzymatic hydrolyser. Water Sci. Technol, 46, 427–434.
  • Mendes AA, Castro HF, Pereira EB, Furigo A Jr. (2005). Application of lipases for wastewater treatment containing high levels of lipids. Quim Nova, 28, 296–305.
  • Mendes AA, Pereira EB, Castro HF. (2006). Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Engin J, 32, 185–190.
  • Merino S, Cherry J. (2007). Progress and challenges in enzyme development for biomass utilisation. Adv Biochem Engin. Biotechnol, 108, 95–120.
  • Mladenovska Z, Ishoy T, Mandiralioglu A, Westermann P, Ahring BK. (2001). Bioaugmentation of a mesophilic biogas reactor by anaerobic xylanolytic and cellulolytic bacteria, in Proceedings of 9th World Congress on Anaerobic Digestion, Part I, ed. by van Velsen AFM and Verstraete WH, Technologisch Instituut vzw, Antewerpen, 183–188.
  • Mongkolthanaruk W, Dharmsthiti S. (2002). Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Int Biodeter Biodegr, 50, 101–105.
  • Mshandete A, Bjornssson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B. (2007). Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res, 39, 1569–1575.
  • Mshandete A, Bjornssson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B. (2008).Two-stage anaerobic digestion of aerobic pre-treated sisal leaf decortications residues: hydrolases activities and biogas production profile. Afr J Biochem Res, 2, 211–218.
  • Muller HW, Trosch W. (1986). Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl Microbiol Biotechnol, 24, 180–185.
  • Noykova N, Muller TG, Gyllenberg M, Timmer J. (2002). Quantitative analysis of anaerobic wastewater treatment processes: Identifiability and Parameter Estimation. Biotechnol Bioengin, 78, 89–103.
  • Palatsi J, Laureni M, Andres MV, Flotats X, Nielsen HB, Angelidaki I. (2009). Strategies for recovering inhibition caused by long chain fatty acids an anaerobic thermophilic biogas reactors. Bioresour Technol, 100, 4588–4596.
  • Palmisano AC, Schwab BS, Maruseik DA. (1993). Hydrolytic enzyme activity in landfilled refuse. Appl Microbiol Biotechnol, 38, 828–832.
  • Parawira W. (2004). Anaerobic treatment of agricultural residues and wastewater: Application of high-rate reactors’. PhD thesis, Lund University, Sweden. ISBN: 91–89627-28-8. http://www.lub.lu.se/luft/diss/tec_848/tec_848_kappa.pdf.
  • Parawira W, Murto M, Read JS, Mattiasson B. (2005). Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem, 40, 2945–2952.
  • Parawira W., and Tekere M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol, 3, 20–31.
  • Parmar N, Singh A, Ward OP. (2001). Enzyme treatment to reduce solids and improve settling of sewage sludge. J Industrial Microbiol. Biotechnol, 26, 383–386.
  • Pavlostathis SG, Giraldo-Gomez E. 1991. Kinetics of anaerobic treatment. Water Sci Technol 24, 35–59.
  • Pereira MA, Cavaleiro AJ, Mota M, Alves MM. (2003). Accumulation of long-chain fatty acids onto anaerobic sludge under steady state and shock loading conditions: effect on acetogenic and methanogenic activity. Water Sci Technol, 48, 33–40.
  • Pereira MA, Souza DZ, Mota M, Alves MM. (2004). Mineralization of LCFA associated to anaerobic sludge: kinetics, transport limitations, enhancement of methanogenic activity and effect of VFA. Biotechnol Bioeng, 88, 502–510.
  • Pereira MA, Pires OC, Mota M, Alves MM. (2005). Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotech Bioeng, 92, 15–23.
  • Perle M, Kimshie S, Shelef G. (1995). Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res, 29, 1549–1554.
  • Petruy R, Lettinga G. (1997). Digestion of milk-fat emulsion. Bioresour Technol, 61, 141–149.
  • Preeti Rao P, Seenayya G. (1994). Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol, 10, 211–214.
  • Priest FG. (1984). Extracellular enzymes. Aspects Microbiol, 9, 1–10.
  • Ramasamy K, Nagamani B, Sahul-Hameed M. (1990). Fermentation Laboratory, Tamil Nadu Agricultural University, Coimbatore. Tech Bull, 1, 91–92.
  • Rintala J and Ahring B. (1994). Thermophilic anaerobic digestion of source-sorted household solid waste: the effects of enzyme additions. Appl Microbiol Biotechnol, 40, 916–919.
  • Romano RT, Zhang R, Teter S, McGarvey JA. (2009). The effects of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol, 100, 4564–4571.
  • Roman HJ, Burgess JE, Pletschke BI. (2006). Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. Afr J Biotechnol, 5, 963–967.
  • Ruggaber TP, Talley JW. (2006). Enhancing bioremediation with enzymatic processes: A Review. Practice Periodical of Hazardous, Toxic and Radioactive Waste Manag April, 73–85.
  • Salminen E, Rintala J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresour Technol, 83, 13–26.
  • Sayed SKI, van der Zanden J, Wijiffels R, Lettinga G. (1988). Anaerobic degradation of the various fractions of slaughterhouse wastewater. Biol Waste, 23, 117–142.
  • Schimpf U, Valbuena R. (2009). Increase in efficiency of biomethanation by enzyme application. Bor Agrar Ber, 68, 44–56.
  • Singh L, Maurya MS, Rammana KV, Alam SI. (1995). Production of biogas from night soil at psychrophilic temperature. Bioresour Technol, 53, 147–149.
  • Sonakya V, Raizada N, Kalia V. (2001). Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett, 23, 1463–1466.
  • Srilatha HR, Nand K, Babu KS, Madhukara K. (1995). Fungal pretreatment of orange processing waste by solid-state fermentation for improved production of methane. Process Biochem, 30, 327–331.
  • Taherzadeh MJ, Karimi K. (2008). Pretreatment of lignocellulosic waste to improve ethanol and biogas production: a review. Int J Molecular Sci, 9, 1621–1651.
  • Tanaka S, Kobayashi T, Kamiyama K, Bildan ML. (1997). Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol, 8, 209–215.
  • Tiehm A, Nickel K, Zellhorn M, Neis U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilisation. Water Res, 35, 2003–2009.
  • Tirumale S, Nand K. (1994). Influence of anaerobic cellulolytic bacterial consortia in the anaerobic digesters on biogas production. Biogas Forum III, 58, 12–15.
  • Valladao ABG, Freire DMG, Cammarota MC. (2007). Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. Int Biodeterior Biodegrad, 60, 219–225.
  • Vavilin VA, Rytov SV, Lokshina L Ya. (1996). A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol, 56, 229–237.
  • Vervaeren H, Hostyn K, Ghekiere G, Willems B. (2010). Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew Energ, 35, 2089–2093.
  • Watson SD, Akhurst T, Whiteley CG, Rose PD, Pletschke BI. (2004). Primary sludge floc degradation is accelerated under biosulphidogenic conditions: Enzymological aspects. Enzym. Microb. Technol, 34, 595–602.
  • Wawrzynczyk J. (2007). Enzymatic treatment of wastewater sludge: Solubilisation, improvement of anaerobic digestion and extraction of extracellular polymeric substances. PhD thesis. Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden.
  • Wawrzynczyk J, Dey ES, Norrlow O, Jansen JIC. (2003). Alternative method for sludge reduction using commercial enzymes. In: Aqua enviro technology transfer: eighth CLWEM/aqua enviro European biosolids and organic residuals Conference, Wakefield, pp 1–5.
  • Weemaes MPJ, Verstraete WH. (1998). Evaluation of Current Wet Sludge Disintegration Techniques – Review. J Chem Technol Biotechnol, 73, 83–92.
  • Weib S, Tauber M, Somitsch W, Meincke R, Muller H, Berg G, Guebitz GM. (2010). Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Res, 44, 1970–1980.
  • Weiland P. (2010). Biogas production: current state and perspective. Appl Microbiol Biotechnol, 85, 849–860.
  • Whiteley CG, Heron P, Pletschke BI, Rose P, Whittington-Jones K. (2002). The enzymology of sludge solubilisation utilising sulphate reducing systems. Properties of proteases and phosphatases. Enzym Microb Technol, 31, 419–424.
  • Yadvika, Santosh, Sreekrishnan TR, Kohli S, Rana V. (2004). Enhancement of biogas production from solid substrates using different techniques− a review. Bioresour Technol, 95, 1–10.
  • Zhang B, He P, Lu F, Shao L, Wang P. (2007). Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Res, 41, 4468–4478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.