1,767
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Human cytochrome b5 reductase: structure, function, and potential applications

, , &
Pages 134-143 | Received 16 Feb 2012, Accepted 17 Sep 2012, Published online: 01 Nov 2012

References

  • Aalfs CM, Salieb-Beugelaar GB, Wanders RJ, Mannens MM, Wijburg FA. 2000. A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Hum Mutat 16: 18–22
  • Abouraya M, Sacco JC, Kahl BS, Trepanier LA. 2011. Evaluation of sulfonamide detoxification pathways in haematologic malignancy patients prior to intermittent trimethoprim-sulfamethoxazole prophylaxis. Br J Clin Pharmacol 71: 566–574
  • Arinç E, Güray T, Saplakoglu U, Adali O. 1992. Purification and characterization of two forms of soluble NADH cytochrome b5 reductases from human erythrocytes. Comp Biochem Physiol, B 101: 235–242
  • Asada T, Nagase S, Nishimoto K, Koseki S. 2008. Molecular dynamics simulation study on stabilities and reactivities of NADH cytochrome B5 reductase. J Phys Chem B 112: 5718–5727
  • Asada T, Nagase S, Nishimoto K, Koseki S. 2009. Simulation study of interactions and reactivities between NADH cytochrome b5 reductase and cytochrome b5. J Mol Liq 147: 139–144
  • Badwey JA, Tauber AI, Karnovsky ML. 1983. Properties of NADH-cytochrome-b5 reductase from human neutrophils. Blood 62: 152–157
  • Bando S, Takano T, Yubisui T, Shirabe K, Takeshita M, Nakagawa A. 2004. Structure of human erythrocyte NADH-cytochrome b5 reductase. Acta Crystallogr D Biol Crystallogr 60: 1929–1934
  • Barber MJ, Quinn GB. 1996. High-level expression in Escherichia coli of the soluble, catalytic domain of rat hepatic cytochrome b5 reductase. Protein Expr Purif 8: 41–47
  • Barber MJ, Quinn GB. 2001. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase. Protein Expr Purif 23: 348–358
  • Bartlett PN. (2008). Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications. Chichester, UK: John Wiley and Sons
  • Beauvais P. 2000. [Hereditary methemoglobinemias]. Arch Pediatr 7: 513–518
  • Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC. 1998. The intracellular location of NADH:cytochrome b5 reductase modulates the cytotoxicity of the mitomycins to Chinese hamster ovary cells. J Biol Chem 273: 8875–8881
  • Bewley MC, Davis CA, Marohnic CC, Taormina D, Barber MJ. 2003. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site. Biochemistry 42: 13145–13151
  • Bewley MC, Marohnic CC, Barber MJ. 2001. The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent. Biochemistry 40: 13574–13582
  • Borgese N, Macconi D, Parola L, Pietrini G. 1982. Rat erythrocyte NADH-cytochrome b5 reductase. Quantitation and comparison between the membrane-bound and soluble forms using an antibody against the rat liver enzyme. J Biol Chem 257: 13854–13861
  • Bulbarelli A, Valentini A, DeSilvestris M, Cappellini MD, Borgese N. 1998. An erythroid-specific transcript generates the soluble form of NADH-cytochrome b5 reductase in humans. Blood 92: 310–319
  • Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. 1987. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet 209: 552–562
  • Da-Silva SS, Sajan IS, Underwood JP. 2003. Congenital methemoglobinemia: a rare cause of cyanosis in the newborn–a case report. Pediatrics 112: e158–e161
  • Davis CA, Crowley LJ, Barber MJ. 2004. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Arch Biochem Biophys 431: 233–244
  • Davis CA, Dhawan IK, Johnson MK, Barber MJ. 2002. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Arch Biochem Biophys 400: 63–75
  • Dekker J, Eppink MH, van Zwieten R, de Rijk T, Remacha AF, Law LK, Li AM, Cheung KL, van Berkel WJ, Roos D. 2001. Seven new mutations in the nicotinamide adenine dinucleotide reduced-cytochrome b(5) reductase gene leading to methemoglobinemia type I. Blood 97: 1106–1114
  • Dürr UH, Waskell L, Ramamoorthy A. 2007. The cytochromes P450 and b5 and their reductases–promising targets for structural studies by advanced solid-state NMR spectroscopy. Biochim Biophys Acta 1768: 3235–3259
  • Ewenczyk C, Leroux A, Roubergue A, Laugel V, Afenjar A, Saudubray JM, Beauvais P, Billette de Villemeur T, Vidailhet M, Roze E. 2008. Recessive hereditary methaemoglobinaemia, type II: delineation of the clinical spectrum. Brain 131: 760–761
  • Fermo E, Bianchi P, Vercellati C, Marcello AP, Garatti M, Marangoni O, Barcellini W, Zanella A. 2008. Recessive hereditary methemoglobinemia: two novel mutations in the NADH-cytochrome b5 reductase gene. Blood Cells Mol Dis 41: 50–55
  • Fukuchi-Mizutani M, Mizutani M, Tanaka Y, Kusumi T, Ohta D. 1999. Microsomal electron transfer in higher plants: cloning and heterologous expression of NADH-cytochrome b5 reductase from Arabidopsis. Plant Physiol 119: 353–362
  • Galle AM, Bonnerot C, Jolliot A, Kader JC. 1984. Purification of a NADH-ferricyanide reductase from plant microsomal membranes with a zwitterionic detergent. Biochem Biophys Res Commun 122: 1201–1205
  • Gibson QH. 1948. The reduction of methaemoglobin in red blood cells and studies on the cause of idiopathic methaemoglobinaemia. Biochem J 42: 13–23
  • Grabowska D, Plochocka D, Jablonska-Skwiecinska E, Chelstowska A, Lewandowska I, Staniszewska K, Majewska Z, Witos I, Burzynska B. 2003. Compound heterozygosity of two missense mutations in the NADH-cytochrome b5 reductase gene of a Polish patient with type I recessive congenital methaemoglobinaemia. Eur J Haematol 70: 404–409
  • Guray T, Arinç E. 1990. Purification of NADH-cytochrome b5 reductase from sheep lung and its electrophoretic, spectral and some other properties. Int J Biochem 22: 1029–1037
  • Hatanaka T, Shimizu R, Hildebrand D. 2004. Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65: 2189–2196
  • Higasa K, Manabe JI, Yubisui T, Sumimoto H, Pung-Amritt P, Tanphaichitr VS, Fukumaki Y. 1998. Molecular basis of hereditary methaemoglobinaemia, types I and II: two novel mutations in the NADH-cytochrome b5 reductase gene. Br J Haematol 103: 922–930
  • Holtz KM, Rockwell S, Tomasz M, Sartorelli AC. 2003. Nuclear overexpression of NADH:cytochrome b5 reductase activity increases the cytotoxicity of mitomycin C (MC) and the total number of MC-DNA adducts in Chinese hamster ovary cells. J Biol Chem 278: 5029–5034
  • Hudspeth MP, Joseph S, Holden KR. 2010. A novel mutation in type II methemoglobinemia. J Child Neurol 25: 91–93
  • Hyde GE, Campbell WH. 1990. High-level expression in Escherichia coli of the catalytically active flavin domain of corn leaf NADH:nitrate reductase and its comparison to human NADH:cytochrome B5 reductase. Biochem Biophys Res Commun 168: 1285–1291
  • Iyanagi T, Watanabe S, Anan KF. 1984. One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase. Biochemistry 23: 1418–1425
  • Jenkins MM, Prchal JT. 1996. A novel mutation found in the 3’ domain of NADH-cytochrome B5 reductase in an African-American family with type I congenital methemoglobinemia. Blood 87: 2993–2999
  • Jenkins MM, Prchal JT. 1997. A high-frequency polymorphism of NADH-cytochrome b5 reductase in African-Americans. Hum Genet 99: 248–250
  • Kaplan JC, Beutler E. 1967. Electrophoresis of red cell NADH- and NADPH-diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem Biophys Res Commun 29: 605–610
  • Kedar PS, Warang P, Ghosh K, Colah RB. 2011. Severe mental retardation and recessive congenital methemoglobinemia in three Indian patients: compound heterozygous for NADH-cytochrome b5 reductase gene mutations. Am J Hematol 86: 327–329
  • Kensil CR, Hediger MA, Ozols J, Strittmatter P. 1983. Isolation and partial characterization of the NH2-terminal membrane-binding domain of NADH-cytochrome b5 reductase. J Biol Chem 258: 14656–14663
  • Kim S, Suga M, Ogasahara K, Ikegami T, Minami Y, Yubisui T, Tsukihara T. 2007. Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 63: 274–279
  • Kimura S, Kawamura M, Iyanagi T. 2003. Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer. J Biol Chem 278: 3580–3589
  • Kimura S, Nishida H, Iyanagi T. 2001. Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis. J Biochem 130: 481–490
  • Kimura S, Umemura T, Iyanagi T. 2005. Two-cistronic expression plasmids for high-level gene expression in Escherichia coli preventing translational initiation inhibition caused by the intramolecular local secondary structure of mRNA. J Biochem 137: 523–533
  • Kitajima S, Yasukochi Y, Minakami S. 1981. Purification and properties of human erythrocyte membrane NADH-cytochrome b5 reductase. Arch Biochem Biophys 210: 330–339
  • Kobayashi Y, Fukumaki Y, Yubisui T, Inoue J, Sakaki Y. 1990. Serine-proline replacement at residue 127 of NADH-cytochrome b5 reductase causes hereditary methemoglobinemia, generalized type. Blood 75: 1408–1413
  • Kugler W, Pekrun A, Laspe P, Erdlenbruch B, Lakomek M. 2001. Molecular basis of recessive congenital methemoglobinemia, types I and II: Exon skipping and three novel missense mutations in the NADH-cytochrome b5 reductase (diaphorase 1) gene. Hum Mutat 17: 348
  • Kumar R, Wallis JG, Skidmore C, Browse J. 2006. A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48: 920–932
  • Lan FH, Tang YC, Huang CH, Wu YS, Zhu ZY. 1998. Antibody-based spot test for NADH-cytochrome b5 reductase activity for the laboratory diagnosis of congenital methemoglobinemia. Clin Chim Acta 273: 13–20
  • Lawson DL, Miale TD, Harvey JL, Bucciarelli RL, Nelson LS. 1977. Leukocyte diaphorase deficiency in congenital methemoglobinemia: a valuable prognostic indicator. Biol Neonate 32: 193–196
  • Lee JY, Kim YH, Lee SJ. 1998. Purification and comparison of NADH-cytochrome b5 reductase from mitochodrial outer membrane of bovin heart and turnip. Korean Biochem J 19: 160–164
  • Lee SJ, Lee JY. 1994. Purification of NADH-cytochrome b5 reductase from bovin heart mitochodria using surfactant, and the mechanism of external electron transport. Korean Biochem J 27: 254–259
  • Leroux A, Junien C, Kaplan J, Bamberger J. 1975. Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation. Nature 258: 619–620
  • Leroux A, Leturcq F, Deburgrave N, Szajnert MF. 2005. Prenatal diagnosis of recessive congenital methaemoglobinaemia type II: novel mutation in the NADH-cytochrome b5 reductase gene leading to stop codon read-through. Eur J Haematol 74: 389–395
  • Leroux A, Mota Vieira L, Kahn A. 2001. Transcriptional and translational mechanisms of cytochrome b5 reductase isoenzyme generation in humans. Biochem J 355: 529–535
  • Lorenzo FRt, Phillips JD, Nussenzveig R, Lingam B, Koul PA, Schrier SL, Prchal JT. 2011. Molecular basis of two novel mutations found in type I methemoglobinemia. Blood Cells Mol Dis 46: 277–281
  • Lostanlen D, Lenoir G, Kaplan JC. 1981. NADH cytochrome b5 reductase activity in lymphoid cell lines. Expression of the defect in epstein Barr virus transformed lymphoblastoid cell lines from patients with recessive congenital methemoglobinemia. J Clin Invest 68: 279–285
  • Madyastha KM, Chary NK, Holla R, Karegowdar TB. 1993. Purification and partial characterization of microsomal NADH-cytochrome b5 reductase from higher plant Catharanthus roseus. Biochem Biophys Res Commun 197: 518–522
  • Manabe J, Arya R, Sumimoto H, Yubisui T, Bellingham AJ, Layton DM, Fukumaki Y. 1996. Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia. Blood 88: 3208–3215
  • Maran J, Guan Y, Ou CN, Prchal JT. 2005. Heterogeneity of the molecular biology of methemoglobinemia: a study of eight consecutive patients. Haematologica 90: 687–689
  • Marohnic CC, Barber MJ. 2001. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase. Arch Biochem Biophys 389: 223–233
  • Marohnic CC, Bewley MC, Barber MJ. 2003. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Biochemistry 42: 11170–11182
  • Marohnic CC, Crowley LJ, Davis CA, Smith ET, Barber MJ. 2005. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Biochemistry 44: 2449–2461
  • Meldolesi J, Corte G, Pietrini G, Borgese N. 1980. Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. II. Evidence that a single enzyme accounts for the activity in its various subcellular locations. J Cell Biol 85: 516–526
  • Mihara K, Sato R. 1975. Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes. J Biochem 78: 1057–1073
  • Mihara K, Sato R. 1978. Detergent-solubilized NADH-cytochrome b5 reductase. Meth Enzymol 52: 102–108
  • Miki K, Kaida S, Kasai N, Iyanagi T, Kobayashi K, Hayashi K. 1987. Crystallization and preliminary x-ray crystallographic study of NADH-cytochrome b5 reductase from pig liver microsomes. J Biol Chem 262: 11801–11802
  • Mirzaei SA. 2010. Cloning, purification and characterization of cytochrome b5 reductase in Pichia pastoris. Tehran, Iran: Pharmaceutical Biology Dep., Tehran University of Medical Sciences
  • Mirzaei SA, Yazdi MT, Sepehrizadeh Z. 2010. Secretory expression and purification of a soluble NADH cytochrome b5 reductase enzyme from Mucor racemosus in Pichia pastoris based on codon usage adaptation. Biotechnol Lett 32: 1705–1711
  • Miyake Y, Nakamura Y, Takayama N, Horiike K. 1975. Alpha reduced nicotinamide adenine dinucleotide-dependent reductase reactions of rat liver microsomes. J Biochem 78: 773–783
  • Mokashi V, Li L, Porter TD. 2003. Cytochrome b5 reductase and cytochrome b5 support the CYP2E1-mediated activation of nitrosamines in a recombinant Ames test. Arch Biochem Biophys 412: 147–152
  • Nishida H, Inaka K, Miki K. 1995. Specific arrangement of three amino acid residues for flavin-binding barrel structures in NADH-cytochrome b5 reductase and the other flavin-dependent reductases. FEBS Lett 361: 97–100
  • Nisimoto Y, Wilson E, Heyl BL, Lambeth JD. 1986. NADH dehydrogenase from bovine neutrophil membranes. Purification and properties. J Biol Chem 261: 285–290
  • Nussenzveig RH, Lingam HB, Gaikwad A, Zhu Q, Jing N, Prchal JT. 2006. A novel mutation of the cytochrome-b5 reductase gene in an Indian patient: the molecular basis of type I methemoglobinemia. Haematologica 91: 1542–1545
  • Opella SJ, Marassi FM. 2004. Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104: 3587–3606
  • Percy MJ, Aslan D. 2008. NADH-cytochrome b5 reductase in a Turkish family with recessive congenital methaemoglobinaemia type I. J Clin Pathol 61: 1122–1123
  • Percy MJ, Crowley LJ, Davis CA, McMullin MF, Savage G, Hughes J, McMahon C, Quinn RJ, Smith O, Barber MJ, Lappin TR. 2005a. Recessive congenital methaemoglobinaemia: functional characterization of the novel D239G mutation in the NADH-binding lobe of cytochrome b5 reductase. Br J Haematol 129: 847–853
  • Percy MJ, McFerran NV, Lappin TR. 2005b. Disorders of oxidised haemoglobin. Blood Rev 19: 61–68
  • Percy MJ, Crowley LJ, Boudreaux J, Barber MJ. 2006a. Expression of a novel P275L variant of NADH:cytochrome b5 reductase gives functional insight into the conserved motif important for pyridine nucleotide binding. Arch Biochem Biophys 447: 59–67
  • Percy MJ, Crowley LJ, Roper D, Vulliamy TJ, Layton DM, Barber MJ. 2006b. Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b(5) reductase: an aid to determine recessive congenital methemoglobinemia status in an infant. Blood Cells Mol Dis 36: 81–90
  • Percy MJ, Gillespie MJ, Savage G, Hughes AE, McMullin MF, Lappin TR. 2002. Familial idiopathic methemoglobinemia revisited: original cases reveal 2 novel mutations in NADH-cytochrome b5 reductase. Blood 100: 3447–3449
  • Percy MJ, Lappin TR. 2008. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency. Br J Haematol 141: 298–308
  • Pietrini G, Carrera P, Borgese N. 1988. Two transcripts encode rat cytochrome b5 reductase. Proc Natl Acad Sci USA 85: 7246–7250
  • Rhoads K, Sacco JC, Drescher N, Wong A, Trepanier LA. 2011. Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast. Toxicol Sci 121: 245–256
  • Roma GW, Crowley LJ, Barber MJ. 2006. Expression and characterization of a functional canine variant of cytochrome b5 reductase. Arch Biochem Biophys 452: 69–82
  • Roma GW, Crowley LJ, Davis CA, Barber MJ. 2005. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase. Biochemistry 44: 13467–13476
  • Sacco JC, Trepanier LA. 2010. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction. Pharmacogenet Genomics 20: 26–37
  • Sakuradani E, Kobayashi M, Shimizu S. 1999. Identification of an NADH-cytochrome b(5) reductase gene from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, by sequencing of the encoding cDNA and heterologous expression in a fungus, Aspergillus oryzae. Appl Environ Microbiol 65: 3873–3879
  • Sangeetha N, Viswanathan P, Balasubramanian T, Nalini N. 2012. Colon cancer chemopreventive efficacy of silibinin through perturbation of xenobiotic metabolizing enzymes in experimental rats. Eur J Pharmacol 674: 430–438
  • Scott EM, Griffith IV. 1959. The enzymic defect of hereditary methemoglobinemia: diaphorase. Biochim Biophys Acta 34: 584–586
  • Setayesh N, Sepehrizadeh Z, Jaberi E, Yazdi MT. 2009. Cloning, molecular characterization and expression of a cDNA encoding a functional NADH-cytochrome b5 reductase from Mucor racemosus PTCC 5305 in E. coli. Biol Res 42: 137–146
  • Shimizu S, Ogawa J, Kataoka M, Kobayashi M. 1997. Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Adv Biochem Eng Biotechnol 58: 45–87
  • Shirabe K, Fujimoto Y, Yubisui T, Takeshita M. 1994. An in-frame deletion of codon 298 of the NADH-cytochrome b5 reductase gene results in hereditary methemoglobinemia type II (generalized type). A functional implication for the role of the COOH-terminal region of the enzyme. J Biol Chem 269: 5952–5957
  • Shirabe K, Landi MT, Takeshita M, Uziel G, Fedrizzi E, Borgese N. 1995. A novel point mutation in a 3’ splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am J Hum Genet 57: 302–310
  • Shirabe K, Nagai T, Yubisui T, Takeshita M. 1998. Electrostatic interaction between NADH-cytochrome b5 reductase and cytochrome b5 studied by site-directed mutagenesis. Biochim Biophys Acta 1384: 16–22
  • Shirabe K, Yubisui T, Borgese N, Tang CY, Hultquist DE, Takeshita M. 1992. Enzymatic instability of NADH-cytochrome b5 reductase as a cause of hereditary methemoglobinemia type I (red cell type). J Biol Chem 267: 20416–20421
  • Shirabe K, Yubisui T, Takeshita M. 1989. Expression of human erythrocyte NADH-cytochrome b5 reductase as an alpha-thrombin-cleavable fused protein in Escherichia coli. Biochim Biophys Acta 1008: 189–192
  • Shockey JM, Dhanoa PK, Dupuy T, Chapital DC, Mullen RT, Dyer MA. 2005. Cloning, functional analysis, and subcellular localization of two isoforms of NADH:cytochrome b5 reductase from developing seeds of tung (Vernicia fordii). Plant Sci 169: 375–385
  • Syed K, Kattamuri C, Thompson TB, Yadav JS. 2011. Cytochrome b5 reductase-cytochrome b5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509: 26–32
  • Takesue S, Omura T. 1970. Purification and properties of NADH-cytochrome b5 reductase solubilized by lysosomes from rat liver microsomes. J Biochem 67: 267–276
  • Tamura M, Yubisui T, Takeshita M. 1983. Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties. J Biochem 94: 1547–1555
  • Tamura M, Yubisui T, Takeshita M, Kawabata S, Miyata T, Iwanaga S. 1987. Structural comparison of bovine erythrocyte, brain, and liver NADH-cytochrome b5 reductase by HPLC mapping. J Biochem 101: 1147–1159
  • Tauber AI, Wright J, Higson FK, Edelman SA, Waxman DJ. 1985. Purification and characterization of the human neutrophil NADH-cytochrome b5 reductase. Blood 66: 673–678
  • Toelle SP, Boltshauser E, Mössner E, Zurbriggen K, Eber S. 2004. Severe neurological impairment in hereditary methaemoglobinaemia type 2. Eur J Pediatr 163: 207–209
  • Vieira LM, Kaplan JC, Kahn A, Leroux A. 1995. Four new mutations in the NADH-cytochrome b5 reductase gene from patients with recessive congenital methemoglobinemia type II. Blood 85: 2254–2262
  • Wang Y, Wu YS, Zheng PZ, Yang WX, Fang GA, Tang YC, Xie F, Lan FH, Zhu ZY. 2000. A novel mutation in the NADH-cytochrome b5 reductase gene of a Chinese patient with recessive congenital methemoglobinemia. Blood 95: 3250–3255
  • Wu Y, Huang C, Zhu Z. 1998. [Leu 72 Pro mutation in the NADH-cytochrome b5 reductase gene found in a Chinese hereditary methemoglobinemia patient]. Zhonghua Xue Ye Xue Za Zhi 19: 195–197
  • Zhang M, Scott JG. 1996. Purification and characterization of cytochrome b5 reductase from the house fly, Musca domestica. Comp Biochem Physiol B, Biochem Mol Biol 113: 175–183
  • Zhuang Y, Wang S, Lan F. 2008. [Establishment of a cellular model with human NADH-cytochrome b5 reductase deficiency via RNA interference]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 25: 400–405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.