2,288
Views
81
CrossRef citations to date
0
Altmetric
Review Article

Current and future trends for biofilm reactors for fermentation processes

&
Pages 1-14 | Received 23 Aug 2012, Accepted 03 Apr 2013, Published online: 06 Aug 2013

References

  • Andreottola G, Foladori P, Ragazzi M, Villa R. (2002). Dairy wastewater treatment in a moving bed biofilm reactor. Water Sci Technol, 45, 321–8
  • Andrews GF, Fonta JP. (1989). A fluidized-bed continuous bioreactor for lactic acid production. Appl Bıochem Bıotech, 20–21, 375–90
  • Agle ME. (2007). Biofilms in food industry. In: Wang HH, Agle M, Meredith E, eds. Biofilms in the Food Environment. Iowa: Blackwell Publishing, 3–19
  • Atkinson B, Swilley EL. (1963). A mathematical model for the trickling filter. In Proc. 18th Industrial Waste Conference, Purdue University, Lafayatte: IN, 706–37
  • Atkinson B, Black GM, Lewis PJS, Pinches A. (1979). Biological particles of a given size, shape, and density for use in biological reactors. Biotechnol Bioeng, 21, 193–200
  • Bertin L, Coloa MC, Ruzzi M, et al. (2006). Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor. Mıcrob Cell Fact, 5, 1--11
  • Boltz JP, Morgenroth E, Brockmann D, et al. (2012). Framework for biofilm model calibration protocol. In: Proceedings 3rd IWA/WEF Wastewater Treatment Modelling Seminar (WWTmod2012). Mont-Sainte-Anne, Québec: Canada, 143–6
  • Bryers, JD. (2000). Process engineering. In: James D.B. ed. Biofilms II Process Analysis and Application. New York: Wiley-Liss, 13–44
  • Bryers JD, Characklis WG. (1989). Biofilms in water and wastewater treatment. In: Characklis WG, Marshall KC, eds. Biofilms. New York: John Wiley & Sons, 671–96
  • Burmølle M, Jeremy SW, Dhana R, et al. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Envıron Mıcrob, 72, 3916–23
  • Cao N, Du J, Gong CS, Tsao GT. (1996). Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol, 62, 2926–31
  • Cao N, Du J, Chen C, et al. (1997). Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor. Appl Biochem Biotech, 63–65, 387–94
  • Capdeville B, Rols JL. (1992). Introduction to biofilms in water and wastewater treatment. In: Melo LF, Bott TR, Fletcher M, Capdeville B. eds. Biofilms – Science and Technology. Dordrecht, The Netherlands: Kluwer Academic Publishers, 13–20
  • Casey E, Glennon B, Hamer G. (1999). Review of membrane aerated biofilm reactors. Resour Conserv Recycl, 27, 203–15
  • Characklis WG. (1990). Laboratory biofilm reactors. In: Characklis WG., Marshall KC. eds. Biofilms. New York: John Wiley & Sons, Inc., 3–17
  • Characklis, WG, Marshall KC. (1990). Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC. eds. Biofilms. New York: John Wiley & Sons, Inc., 3–17
  • Characklis WG, Nevimons MJ, Picologlou BF. (1981). Influence of fouling biofilms on heat transfer. Heat Transfer Eng, 3, 23–37
  • Chen JP, Wu KW, Fukuda H. (2008). Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Appl Biochem Biotechnol, 145, 59–67
  • Cheng K, Demirci A, Catchmark JM. (2010a). Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol, 87, 445–56
  • Cheng K, Demirci A, Catchmark JM. (2010b). Enhanced pullulan production in a biofilm reactor by using response surface methodology. J Ind Microbiol Biotechnol, 37, 587–94
  • Cheng KC, Catchmark MJ, Demirci A. (2009a). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng, 3, 1--10
  • Cheng KC, Demirci A, Catchmark MJ. (2009b). Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl Microbiol Biotechnol, 86, 853–61
  • Choudhury B, Swaminathan T. (2006). Lactic acid fermentation in cell-recycle membrane bioreactor. Appl Biochem Biotechnol, 128, 171–84
  • Christensen BE, Characklis WG. (1990). Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC. eds. Biofilms. New York: John Wiley & Sons, Inc., 93–131
  • de Souza AAU, Brandõ HL, Zamporlini IM, et al. (2008). Application of a fluidized bed bioreactor for cod reduction in textile industry effluents. Resour Conserv Recy, 52, 511–21
  • Degeest B, De Vuyst L. (1999). Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol, 65, 2863–70
  • Demirci A, Pometto AL III. (1995). Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production. Appl Microbiol Biotechnol, 44, 585–9
  • Demirci A, Pometto AL III, Ho K-LC. (1997). Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol, 19, 299–304
  • Demirci A, Pometto AL III, Johnson KE. (1993). Lactic acid production in a mixed culture biofilm reactor. Appl Environ Microbiol, 59, 203–7
  • Demirci A, Pongtharangkul T, Pometto AL III. (2007). Applications of biofilm reactors for production of value-added products by microbial fermentation. In: Blaschek HP, Wang HH, Agle ME. eds. Biofilms in the Food Environment. Iowa: Blackwell Publishing and The Institute of Food Technologists, 167–89
  • De Vuyst L, Vanderveken F, Van de Ven S, Degeest B. (1998). Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol, 84, 1059–68
  • Dumsday GJ, Zhou B, Buhmann S, Stanley GA, Pamment NB. (1997). Continuous ethanol production by Escherichia coli KO11 in continuous stirred tank and fluidized bed fermenters. Australasian Biotechnology, 7, 300–3
  • Ehlers C, Turner SJ. (2012). Biofilms in wastewater treatment systems. In: Lear G, Lewis GD. eds. Microbial Biofilms: Current Research and Applications. New Zealand: Caister Academic Press
  • Enzminger JD, Asenjo JA. (1986). Use of cell recycle in the aerobic fermentative production of citric acid by yeast. Biotechnology Letters, 8, 7–12
  • Fathepure BZ, Vogel TM. (1991). Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl Environ Microbiol, 57, 3418--22
  • Flemming H-C, Wingender J. (2010). The biofilm matrix. Nat Rev Microbiol, 8, 623–33
  • Fukuda H. (1995). Immobilized microorganism bioreactors. In: Asenjo JA, Merchuk JC. ed. Bioreactor System Design. New York: Marcel Dekker, 339–75
  • González C, Marciniak J, Villaverde S, et al. (2008). Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia. Water Sci Technol, 58, 95–102
  • Heffernan B, Murphy CD, Syron E, Casey E. (2009). Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor. Environ Sci Techno, 43, 6776–85
  • Heijnen JJ, Mulder A, Weltevrede R, et al. (1991). Large-scale anaerobic-aerobic treatment of complex industrial-waste water using biofilm reactors. Water Sci Technol, 23, 1427–36
  • Ho K-LG, Pometto AL III, Hinz PN, Demirci A. (1997a). Nutrient leaching and end product accumulation in plastic composite support for L-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol, 63, 2524–32
  • Ho K-LG, Pometto AL III, Hinz PN, et al. (1997b). Ingredients selection for plastic composite support for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol, 63, 2516–23
  • Horiuchi J-I, Tabata K, Kanno T, Kobayashi M. (2000). Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J Biosci Bioeng, 89, 126–30
  • Hui YS, Amirul AA, Yahya RMA, Azizan MNM. (2010). Cellulase production by free and immobilized Aspergillus terreus. World J Microbiol Biotechnol, 26, 79–84
  • Hutkins RW. (2006). Microbiology and technology of fermented foods. Iowa: Blackwell Publishing
  • Jackson LR, Trudel LJ, Lipman NS. (1999). Small-scale monoclonal antibody production In Vitro: methods and resources. Proceedings of the Production of Monoclonal Antibodies Workshop, Bologna, Italy
  • Jayaraman VK. (1992). The solution of hollow-fiber bioreactor design equations. Biotechnol Prog, 8, 462–64
  • Kang S-W, Kim S-W, Lee J-S. (1995). Production of cellulase and xylanase in a bubble column using immobilized Aspergillus niger KKS. Appl Bıochem Bıotech, 53, 101–6
  • Keevil CW, Walker JT. (1992). Normarski DIC microscopy and image analysis of biofilms. Binary, 4, 93–85
  • Khiyami MA, Pometto AL, Kennedy WJ. (2006). Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J Agric Food Chem, 54, 1693–8
  • Koupaiea EH, Moghaddama MRA, Hashemib SH. (2011). Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines. J Hazard Mater, 195, 147–54
  • Körstgens V, Flemming HC, Wingender J, Borchard W. (2001). Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol, 43, 49–57
  • Kumar CG, Anand SK. (1998). Review Significance of microbial biofilms in food industry: a review. Int J Food Microbiol, 42, 9–27
  • Kunduru RM, Pometto AL III. (1996a). Evaluation of plastic composite supports for enhanced ethanol production in biofilm reactors. J Ind Microbiol, 16, 241–8
  • Kunduru RM, Pometto AL III. (1996b). Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol, 16, 249–56
  • Landini P, Antoniani D, Burgess JG, Nijland R. (2010). Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol, 86, 813–23
  • Lazarova V, Jacques M. (2000). Innovative Biofilm treatment technologies for water and waste water treatments. In: Bryers JD. ed. Biofilms II Process Analysis and Application. New York: Wiley-Liss, 159–99
  • Leitea JAC, Fernandesa BS, Pozzia E, et al. (2008). Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. Int J Hydrogen Energy, 33, 579–86
  • Martinova M, Hadjieva D, Vlaev S. (2010). Gas–liquid dispersion in a fibrous fixed bed biofilm reactor at growth and non-growth conditions. Process Biochem, 45, 1023–9
  • Mazumder D, Dikshit AK. (2004). Hybrid reactor system for wastewater treatment – application and approach of modelling. Int J Environ Pollut, 21, 105–31
  • Mehaia MA, Cheryan M. (1984). Hollow fibre bioreactor for ethanol production: application to the conversion of lactose by Kluyveromyces fragilis. Enzyme Microb. Technol, 6, 117–20
  • Melo LF, Oliveira R. (2001). Biofilm reactors. In: Cabral JMS, Mota M, Tramper J. eds. Multiphase Bioreactor Design. New York: Taylor & Francis, 271–309
  • Mulchandani A, Luong HTJ. (1988). Biosynthesis of pullulan using immobilized Aureobasidium pullulans cells. Biotechnol Bioeng, 33, 306–12
  • Murga R, Stewart PS, Daly D. (1995). Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng, 45, 503–10
  • Najafpour G, Younesi H, Ismail KSK. (2004). Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol, 92, 251–60
  • Nakashiam T, Fukuda FH, Kyotoni S, Morikawa H. (1988). Culture conditions for intracellular lipases production by Rhizopus chinensis and its immobilization within biomass support particles. J Ferment Technol, 66, 444–8
  • Nicolella C, van Loosdrecht MCM, Heijnen JJ. (2000). Wastewater treatment with particulate biofilm reactors. J Biotechnol, 80, 1–33
  • Nikolov L, Karamanev D. (1987). Experimental study of the inverse fluidized bed biofilm reactor. Can J Chem Eng, 65, 214–17
  • Nyvad B, Fejerskov O. (1997). Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Commun Dent Oral Epiderm, 25, 69–75
  • Ozmihci S, Kargi F. (2009). Fermentation of cheese whey powder solution to ethanol in a packed-column bioreactor: effects of feed sugar concentration. J Chem Technol Biotechnol, 84, 106–11
  • Ophir T, Gutnick DL. (1994). A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol, 60, 740–5
  • Oriel P. (1988). Immobilization of recombinant Escherichia coli in silicone polymer beads. Enzyme Microb Technol, 10, 518–23
  • Park YH, Wallis DA. (1984). Steady-state performance of a continuous biofilm fermentor system for penicillin production. Korean J Chem Eng, 1, 119–28
  • Park YH, Kim EY, Seo WT, et al. (1989). Production of cephalosporin C in a fluidized-bed bioreactor. J Ferment Bioeng, 67, 409–14
  • Park YS, Toda K. (1992). Multi-stage biofilm reactor for acetic acid production at high concentration. Biotechnol Lett, 14, 609–12
  • Phattaranawik J, Leiknes T. (2010). Study of hybrid vertical anaerobic sludge-aerobic biofilm membrane bioreactor for wastewater treatment. Water Envıron Res, 82, 273–80
  • Pongtharangkul T, Demirci A. (2006a). Evaluation of culture medium for nisin production in repeated-batch biofilm reactor. Biotechnol Prog, 22, 217–24
  • Pongtharangkul T, Demirci A. (2006b). Effects on pH profiles on nisin production in biofilm reactor. Appl Microbiol Biotechnol, 71, 804–11
  • Pongtharangkul T, Demirci A. (2006c). Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol Biotechnol, 73, 73–9
  • Pongtharangkul T, Demirci A. (2007). Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. Appl Microbiol Biotechnol, 74, 555–62
  • Pramod T, Lingappa K. (2008). Immobilization of Aspergillus niger in polyurethane foam for citric acid production from carob pod extract. Am J Food Tech, 3, 252–6
  • Qureshi N, Annous BA, Ezeji TC, et al. (2005). Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Mıcrob Cell Fact, 4, 1--21
  • Sakurai A, Iami H, Sakakibara M. (1999). Citric acid production suing biofilm of Aspergillus niger. Recent Res Dev Biotechnol Bioeng, 2, 1–13
  • Sankpal NV, Joshi AP, Kulkarni BD. (2001). Citric acid production by Aspergillus niger immobilized on cellulose microfibrils: influence of morphology and fermenter conditions on productivity. Process Biochem, 36, 1129–39
  • Sanroman A, Pintado J, Lema JM. (1994). A comparison of two techniques (adsorption and entrapment) for the immobilization of Aspergillus niger in polyurethane foam. Biotechnol Tech, 6, 389–394
  • Seca I, Torres R, Val del Río A, et al. (2011). Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater. Water Sci Technol, 63, 1880–6
  • Shieh WK, Keenan JD. (1986). Fluidized bed biofilm reactor for wastewater treatment. Adv Biochem Eng Biotechnol, 33, 131–69
  • Shuler ML, Kargi F. (2002). Engineering principles for bioprocesses. In: Bioprocess Engineering Basic Concepts. Upper Saddle River, NJ: Prentice Hall Inc., 245–85
  • Srivastava P, Kundu S. (1999). Studies on Cephalosporin-C production in an air lift reactor using different growth modes of Cephalosporium acremonium. Proc Biochem, 34, 329–33
  • Stewart PS, Murga R, Srinivasan R, de Beer D. (1995). Biofilm structure heterogeneity visualized by three microscopic methods. Water Res, 29, 2006–9
  • Sutherland IW. (1972). Bacterial exopolysaccharides. Adv Microb Physiol, 8, 143–212
  • Teixeira P, Oliveira R. (1999). Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. J Adhes Sci Tech, 13, 1287–94
  • Terada A, Yamamoto T, Hibiya K, et al. (2004). Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor. Water Sci Technol, 49, 263–8
  • Urbance SE, Pometto AL III, DiSpirito AA, Demirci A. (2003). Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol, 17, 53–65
  • Urbance SE, Pometto AL III, DiSpirito AA, Denli Y. (2004). Evaluation of succinic acid continuous and repeated-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol, 65, 664–70
  • Vassilev NB, Vassileva MC, Spassova DI. (1993). Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Appl Microbiol Biotechnol, 39, 285–8
  • Venkatadri R, Tsai SP, Vukanic N, Hein LB. (1992). Use of biofilm membrane reactor for the production of lignin peroxidase and treatment of pentachlorophenol by Phanerochaete chrysosporium. Hazardous waste & Hazardous Materials, 9, 231–43
  • Wang J. (2000). Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresource Technol, 75, 245–7
  • Webb C, Fukuda H, Atkinson B. (1986). The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol Bioeng, 28, 41–50
  • Weuster-Botz D, Aivasidis A, Wandrey C. (1993). Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: process development for the fermentation of hydrolysed B-starch without sterilization. Appl Microbiol Biotechnol, 39, 685–90
  • Williams JA. (2002). Keys to bioreactor selection. Chemical Engineering Progress, 98, 34–41
  • Wimpenny J, Manz W, Szewzyk U. (2000). Heterogeneity in biofilms. FEMS Microbiol Rev, 24, 661–71
  • Xu H, Lee H-Y, Ahn J. (2011). Characteristics of biofilm formation by selected foodborne pathogens. J Food Saf, 31, 91–7
  • Yang ST, Lo YM, Min BD. (1996). Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnol Prog, 12, 630–7
  • Zhang Y, Ma Y, Yang F, Zhang C. (2009). Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J Ind Microbiol Biotechnol, 36, 1117–21
  • Zhang Z, Chen S, Wu P, et al. (2010). Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR). Bioresour Technol, 101, 6309–14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.