1,429
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Fluorescent labels in biosensors for pathogen detection

, &
Pages 82-93 | Received 17 Oct 2012, Accepted 02 May 2013, Published online: 25 Jul 2013

References

  • Agrawal A, Tripp RA, Anderson LJ, Nie S. (2005). Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J Virol, 79, 8625–8
  • Ai K, Zhang B, Lu L. (2009). Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem, 121, 310–14
  • Alan W. (2006). Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol, 10, 62–6
  • Ansari AA, Alhoshan M, Alsalhi MS, Aldwayyan AS. (2010). Prospects of nanotechnology in clinical immunodiagnostics. Sensors, 10, 6535–81
  • Arben M. (2010). Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron, 26, 1164–77
  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron, 28, 1–12
  • Bailey RE, Smith AM, Nie S. (2004). Quantum dots in biology and medicine. Physica E, 25, 1–12
  • Baker SN, Baker GA. (2010). Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Edit, 49, 6726–44
  • Beckers H, Tips P, Soentoro P, et al. (1988). The efficacy of enzyme immunoassays for the detection of salmonellas. Food Microbiol, 5, 147–56
  • Benchaib M, Delorme R, Pluvinage M, et al. (1996). Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy. Histochem Cell Biol, 106, 253–6
  • Bourlinos AB, Stassinopoulos A, Anglos D, et al. (2008). Photoluminescent carbogenic dots. Chem Mater, 20, 4539–41
  • Bruchez M, Moronne M, Gin P, et al. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–16
  • Chan WCW, Nie S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–18
  • Chang H, Tang L, Wang Y, et al. (2010). Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem, 82, 2341–6
  • Chang YH, Chang TC, Kao E, Chou C. (1996). Detection of protein a produced by staphylococcus aureus with a fiber-optic-based biosensor. Biosci Biotech Bioch, 60, 1571–4
  • Chen L, Zhang X, Zhang C, et al. (2011). Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal Chem, 83, 7316–22
  • Chou PT, Lai CW, Hsiao YH, Peng YK. (2012). Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/msio2 for cell imaging and drug release. J Mater Chem, 22, 14403–9
  • Chua A, Yean CY, Ravichandran M, et al. (2011). A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron, 26, 3825–31
  • Chuang H, Macuch P, Tabacco MB. (2001). Optical sensors for detection of bacteria. 1. General concepts and initial development. Anal Chem, 73, 462–6
  • Curtis T, Naal RMZG, Batt C, et al. (2008). Development of a mast cell-based biosensor. Biosens Bioelectron, 23, 1024–31
  • Davis JJ, Green MLH, Allen O’Hill H, et al. (1998). The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta, 272, 261–6
  • Deisingh A, Thompson M. (2004). Strategies for the detection of escherichia coli o157: H7 in foods. J Appl Microbiol, 96, 419–29
  • Demchenko AP. (2008). Introduction to fluorescence sensing. Ukraine: Springer Publisher and Distributor
  • Deng S, Upadhyayula VKK, Smith GB, Mitchell MC. (2008). Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens J, 8, 954–62
  • Denton KA, Kramer MF, Lim DV. (2009). Rapid detection of mycobacterium tuberculosis in lung tissue using a fiber optic biosensor. J Rapid Meth Aut Mic, 17, 17–31
  • Dong H, Gao W, Yan F, et al. (2010). Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem, 82, 5511–17
  • Duan Y, Yu Q. (2012) Method and device of fast detection of microbial sample. Chinese Patent, ZL 2012 2 0497883.8
  • Dubertret B, Skourides P, Norris DJ, et al. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298, 1759–62
  • El-Boubbou K, Gruden C, Huang X. (2007). Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc, 129, 13392–3
  • García S. (2001). Guide to foodborne pathogens. New York, USA: John Wiley and Sons Publisher and Distributor
  • Geng T, Morgan MT, Bhunia AK. (2004). Detection of low levels of listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microb, 70, 6138–46
  • Giletto A, Fyffe JG. (1998). A novel elisa format for the rapid and sensitive detection of staphylococcal enterotoxin a. Biosci Biotech Bioch, 62, 2217–22
  • Goldman ER, Balighian ED, Mattoussi H, et al. (2002). Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc, 124, 6378–82
  • Goldman ER, Clapp AR, Anderson GP, et al. (2004). Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem, 76, 684–8
  • Guilbault GG. (1990). Practical fluorescence. New York, USA: CRC Publisher and Distributor
  • Härmä H, Soukka T, Lövgren T. (2001). Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem, 47, 561–8
  • Härmä H, Soukka T, Shavel A, et al. (2007). Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide (iii) chelate in competitive bioaffinity assays of biotin and estradiol. Anal Chim Acta, 604, 177–83
  • Hayes PS, Graves LM, Ajello GW, et al. (1991). Comparison of cold enrichment and us department of agriculture methods for isolating listeria monocytogenes from naturally contaminated foods. The listeria study group. Appl Environ Microb, 57, 2109–13
  • Hsu PC, Shih ZY, Lee CH, Chang HT. (2012). Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem, 14, 917–20
  • Hu SL, Niu KY, Sun J, et al. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem, 19, 484–8
  • Hun X, Zhang Z. (2007). A novel sensitive staphylococcal enterotoxin c1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem, 105, 1623–9
  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–8
  • Ikanovic M, Rudzinski WE, Bruno JG, et al. (2007). Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores. J Fluoresc, 17, 193–9
  • Jofre A, Martin B, Garriga M, et al. (2005). Simultaneous detection of listeria monocytogenes and salmonella by multiplex PCR in cooked ham. Food Microbiol, 22, 109–15
  • Johnson P, Lund M, Shorthill R, et al. (2001). Real time biodetection of individual pathogenic microorganisms in food and water. Biomed Sci Instrum, 37, 191–6
  • Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258, 818–21
  • Kang S, Pinault M, Pfefferle LD, Elimelech M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23, 8670–3
  • Kerman K, Morita Y, Takamura Y, Tamiya E. (2005). Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Analytical and bioanalytical chemistry, 381, 1114–21
  • Ki Rahm L, Ik-Joong K. (2009). Effects of dopamine concentration on energy transfer between dendrimer-qd and dye-labeled antibody. Ultramicroscopy, 109, 894–8
  • Klostranec JM, Chan WCW. (2006). Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater, 18, 1953–64
  • Ko SH, Grant SA. (2006). A novel fret-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron, 21, 1283–90
  • Larson DR, Zipfel WR, Williams RM, et al. (2003). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 300, 1434–36
  • Li Q, Ohulchanskyy TY, Liu R, et al. (2010). Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. The Journal of Physical Chemistry C, 114, 12062–8
  • Li Y, Dick WA, Tuovinen OH. (2004). Fluorescence microscopy for visualization of soil microorganisms-a review. Biol Fert Soils, 39, 301–11
  • Lin F, Pei DJ, He W, et al. (2012). Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots. J Mater Chem, 22, 11801–7
  • Liu Y, Brandon R, Cate M, et al. (2007). Detection of pathogens using luminescent cdse/zns dendron nanocrystals and a porous membrane immunofilter. Anal Chem, 79, 8796–802
  • Liu Y, Duan Y. (2006). Biosensors for pathogen detection. Encyclopedia of Sensors, X, 1–30
  • Long YM, Zhou CH, Zhang ZL, et al. (2012). Shifting and non-shifting fluorescence emitted by carbon nanodots. J Mater Chem, 22, 5917–20
  • Lu W, Qin X, Liu S, et al. (2012). Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (ii) ions. AnalChem, 84, 5351–7
  • Mahmudi-Azer S, Lacy P, Bablitz B, Moqbel R. (1998). Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils. J Immunol Methods, 217, 113–19
  • Mao XJ, Zheng HZ, Long YJ, et al. (2010). Study on the fluorescence characteristics of carbon dots. Spectrochim Acta A, 75, 553–7
  • Mohapatra S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun, 48, 8835–37
  • Mujumdar RB, Ernst LA, Mujumdar SR, et al. (1993). Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem, 4, 105–11
  • Mukundan H, Xie H, Price D, et al. (2009). Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. Analytical Chemistry, 82, 136–44
  • O'connell MJ, Bachilo SM, Huffman CB, et al. (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593–6
  • Oi VT, Glazer AN, Stryer L. (1982). Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol, 93, 981–6
  • Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, et al. (1999). Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem, 47, 1179–88
  • Papillard-Marechal S, Enouf V, Schnuriger A, et al. (2011). Monitoring epidemic viral respiratory infections using one-step real-time triplex rt-pcr targeting influenza a and b viruses and respiratory syncytial virus. J Med Virol, 83, 695–701
  • Qin D, He X, Wang K, Tan W. (2008). Using fluorescent nanoparticles and sybr green i based two-color flow cytometry to determine mycobacterium tuberculosis avoiding false positives. Biosens Bioelectron, 24, 626–31
  • Qin PZ, Niu CG, Ruan M, et al. (2010). A novel bifunctional europium complex as a potential fluorescent label for DNA detection. Analyst, 135, 2144–9
  • Rosenthal SJ. (2001). Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol, 19, 621–2
  • Rosi NL, Mirkin CA. (2005). Nanostructures in biodiagnostics. Chem Rev, 105, 1547–62
  • Rowe-Taitt CA, Golden JP, Feldstein MJ, et al. (2000). Array biosensor for detection of biohazards. Biosens Bioelectron, 14, 785–94
  • Sapsford KE, Berti L, Medintz IL. (2006). Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie International Edition, 45, 4562–89
  • Sapsford KE, Ngundi MM, Moore MH, et al. (2006). Rapid detection of foodborne contaminants using an array biosensor. Sensor Actuat B-Chem, 113, 599–607
  • Schena M, Shalon D, Davis RW, Brown PO. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–70
  • Seydack M. (2005). Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron, 20, 2454–69
  • Shen J, Zhu Y, Yang X, Li C. (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun, 48, 3686–99
  • Shen L. (2011). Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater, 2, 355–72
  • Simpson-Stroot JM, Kearns EA, Stroot PG, et al. (2008). Monitoring biosensor capture efficiencies: development of a model using gfp-expressing escherichia coli o157: H7. J. Microbiol. Methods, 72, 29–37
  • Smith AM, Nie S. (2004). Chemical analysis and cellular imaging with quantum dots. Analyst, 129, 672–7
  • Srivastava A, Srivastava O, Talapatra S, et al. (2004). Carbon nanotube filters. Nat Mater, 3, 610–14
  • Su XL, Li Y. (2004). Quantum dot biolabeling coupled with immunomagnetic separation for detection of escherichia coli o157:H7. Anal Chem, 76, 4806–10
  • Sutherland AJ. (2002). Quantum dots as luminescent probes in biological systems. Curr Opin Solid St M, 6, 365–70
  • Tims TB, Dickey SS, Demarco DR, Lim DV. (2001). Detection of low levels of listeria monocytogenes within 20 hours using an evanescent wave biosensor. Am Clin Lab, 20, 28–31
  • Tu M-C, Chang Y-T, Kang Y-T, et al. (2012). A quantum dot-based optical immunosensor for human serum albumin detection. Biosensors & Bioelectronics, 34, 286–90
  • Tully E, Hearty S, Leonard P, O'Kennedy R. (2006). The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of listeria monocytogenes cell surface proteins. Int J Biol Macromol, 39, 127–34
  • Upadhyayula VKK, Deng S, Smith GB, Mitchell MC. (2009). Adsorption of bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and nanoceram (tm). Water Res, 43, 148–56
  • Valanne A, Suojanen J, Peltonen J, et al. (2009). Multiple sized europium (iii) chelate-dyed polystyrene particles as donors in fret-an application for sensitive protein quantification utilizing competitive adsorption. Analyst, 134, 980–6
  • Vinayaka A, Thakur M. (2010). Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem, 397, 1445–55
  • Wang H, Li Y, Slavik M. (2007). Rapid detection of listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J Rapid Meth Aut Microbiology, 15, 67–76
  • Wang Q, Liu X, Zhang L, Lv Y. (2012). Microwave-assisted synthesis of carbon nanodots through eggshell membrane and their fluorescent application. Analyst, 137, 5392–7
  • Wang X, He Y, Song G. (2012). A graphene oxide–rhodamine 6g nanocomposite as turn-on fluorescence probe for selective detection of DNA. Physics Procedia, 25, 394–400
  • Wang X, Qu K, Xu B, et al. (2011). Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem, 21, 2445–50
  • Wray S, Cope M, Delpy DT, et al. (1988). Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 933, 184–92
  • Wu X, Liu H, Liu J, et al. (2003). Immunofluorescent labeling of cancer marker her2 and other cellular targets with semiconductor quantum dots. Nat Biotech, 21, 41–6
  • Xing Y, Chaudry Q, Shen C, et al. (2007). Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature Protocols, 2, 1152–65
  • Xu K, Huang JR, Ye ZZ, et al. (2009). Recent development of nano-materials used in DNA biosensors. Sensors, 9, 5534–57
  • Xu X, Ray R, Gu Y, et al. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am ical Soc, 126, 12736–7
  • Yang L, Li Y. (2006). Simultaneous detection of escherichia coli o157: H7 and salmonella typhimurium using quantum dots as fluorescence labels. Analyst, 131, 394–401
  • Yang L, Li Y. (2005). Quantum dots as fluorescent labels for quantitative detection of salmonella typhimurium in chicken carcass wash water. J Food Protect, 68, 1241–5
  • Yang M, Yao J, Duan Y. (2012). Graphene and its derivatives for cell biotechnology. Analyst, 138, 72–86
  • Yang ST, Cao L, Luo PG, et al. (2009). Carbon dots for optical imaging in vivo. J erican ical Soc, 131, 11308–9
  • Yang ST, Wang X, Wang H, et al. (2009). Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C, 113, 18110–14
  • Yang Y, Cui J, Zheng M, et al. (2012). One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun, 48, 380–2
  • Yao J, Sun Y, Yang M, Duan Y. (2012). Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem, 22, 14313–29
  • Yu Q, Wang Q, Lin Q, Duan Y. (2012). Antibody immobilization methods for optical immunoassays. Anal Methods, submitted
  • Yu Q, Zhan X, Liu K, et al. (2013). Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy. Anal Chem, 85, 4578--85
  • Yu X, Xia H-S, Sun Z-D, et al. (2013). On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. Biosens Bioelectron, 41, 129–36
  • Yuan J, Matsumoto K. (1996). Fluorescence enhancement by electron-withdrawing groups on β-diketones in eu (iii)-β-diketonato-topo ternary complexes. Anal Sci, 12, 31–6
  • Yuan J, Wang G. (2005). Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J Fluoresc, 15, 559–68
  • Zhang Y, Zeng Q, Sun Y, et al. (2010). Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots. Biosens Bioelectron, 26, 149–54
  • Zhou C, Pivarnik P, Auger S, et al. (1997). A compact fiber-optic immunosensor for salmonella based on evanescent wave excitation. Sensor Actuat B-Chem, 42, 169–75
  • Zhu L, Ang S, Liu WT. (2004). Quantum dots as a novel immunofluorescent detection system for cryptosporidium parvum and giardia lamblia. Appl Environ Microb, 70, 597–8
  • Zhu P, Shelton DR, Karns JS, et al. (2005). Detection of water-borne e. Coli o157 using the integrating waveguide biosensor. Biosens Bioelectron, 21, 678–83
  • Zong S, Wang Z, Zhang R, et al. (2013). A multiplex and straightforward aqueous phase immunoassay protocol through the combination of sers-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron, 41, 745–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.