818
Views
51
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology

Pages 103-113 | Received 21 Jan 2013, Accepted 08 May 2013, Published online: 29 Jul 2013

References

  • Andreesen JR. (1994). Glycine metabolism in anaerobes. Leeuwenhoek J Microbiol, 66, 223–37
  • Andrews SC, Berks BC, McClay J, et al. (1997). A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology, 143, 3633–47
  • Bagramyan K, Mnatsakanyan N, Poladian A, et al. (2002). The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett, 516, 172–8
  • Bagramyan K, Mnatsakanyan N, Trchounian A. (2003). Formate increases the F0F1-ATPase activity in Escherichia coli membrane vesicles. Biochem Biophys Res Commun, 306, 361–5
  • Bagramyan K, Trchounian A. (2003). Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Moscow), 68, 1159–70
  • Ballantine SP, Boxer DH. (1985). Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol, 163, 454–9
  • Ballantine SP, Boxer DH. (1986). Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem, 156, 277–84
  • Blbulyan S, Avagyan A, Poladyan A, Trchounian A. (2011). Role of Escherichia coli different hydrogenases in H+ efflux and the F0F1-ATPase activity during glycerol fermentation at different pH. Biosci Rep, 31, 179–84
  • Blokesch M, Magalon A, Bock A. (2001). Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases, 1, 2, and 3 from Escherichia coli. J Bacteriol, 189, 2817–22
  • Bock A, King PW, Blokesh M, Posewitz MC. (2006). Maturation of hydrogenases. Adv Microb Physiol, 51, 1–71
  • Bock A, Sawers G. (2006). Fermentation. In Neidhardt, FG. Ed.-in-Chief. Escherichia coli and Salmonella. Cellular and molecular biology. Washington, DC: ASM Press. Available at: http://www.ecosal.org
  • Bohm R, Sauter M, Bock A. (1990). Nucleotide sequence and expression of an Escherichia coli operon coding of formate hydrogenlyase components. Mol Microbiol, 4, 231–43
  • Booth IR. (2006). Glycerol and methylglyoxal metabolism. In Neidhardt FG, Ed-in-Chief. EcoSal – Escherichia coli and Salmonella. Cellular and molecular biology. Washington, DC: ASM Press. Available at: http://www.ecosal.org
  • Brondsted L, Atlung T. (1994). Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol, 176, 5423–8
  • Cintolesi A, Comburg JM, Rigou V, et al. (2011). Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 109, 187–98
  • Colbeau A, Kelley BC, Vignais PM. (1980). Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol, 144, 141–8
  • Das D, Dutta T, Nath K, et al. (2006). Role of Fe-hydrogenase in biological hydrogen production. Curr Sci, 90, 1627–37
  • Das D, Veziroglu TN. (2001). Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy, 26, 13–28
  • Dharmadi Y, Murarka A, Gonzalez R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol Bioeng, 94, 821–9
  • Domka J, Lee J, Bansal T, Wood TK. (2007). Temporal gene-expression in Escherichia coli K-12 biofilm. Environm Microbiol, 9, 332–46
  • Dubini A, Pye RL, Jack RL, et al. (2002). How bacteria get energy from hydrogen: A genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydrogen Energy, 27, 1413–20
  • Forzi L, Sawers RG. (2007). Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals, 20, 565–78
  • Franchi E, Tosi C, Scolla G, et al. (2004). Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Marine Biotechnol, 6, 552–65
  • Futatsugi L, Saito H, Kakegawa T, Kobayashi H. (1997). Growth of an Escherichia coli mutant deficient in respiration. FEMS Microbiol Lett, 156, 141–5
  • Gabrielyan L, Torgomyan H, Trchounian A. (2010). Growth characteristics and hydrogen production by Rhodobacter sphaeroides using various amino acids as nitrogen sources and their combinations with carbon sources. Int J Hydrogen Energy, 35, 12201–7
  • Gabrielyan L, Trchounian A. (2009a). Purple bacteria and cyanobacteria as potential producers of molecular hydrogen: an electrochemical and bioenergetic approach. In Trchounian A, ed. Bacterial membranes. Ultrastructure, bioelectrochemistry, bioenergetics and biophysics. Kerala (India): Research Signpost, 233–73
  • Gabrielyan L, Trchounian A. (2009b). Relationship between molecular hydrogen production, proton transport and the FOF1-ATPase activity in Rhodobacter sphaeroides strains from mineral springs. Int J Hydrogen Energy, 34, 2567–72
  • Gabrielyan L, Trchounian A. (2012). Concentration dependent glycine effect on the photosynthetic growth and bio-hydrogen production by Rhodobacter sphaeroides from mineral springs. Biomass & Bioenergy, 36, 333–8
  • Gadhamshett V, Sukumaran A, Nirmalakhandan N, Myint MT. (2008). Photofermentation of malate for biohydrogen production – a modeling approach. Int J Hydrogen Energy, 33, 2138–46
  • Ganesh I, Ravikumar S, Hong SH. (2012). Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotech & Bioprocess Eng, 17, 671–8
  • Gonzalez R, Murarka A, Dharmadi Y, Yasdani SS. (2008). A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng, 10, 234–45
  • Guillaume SP, Patrick CH. (2009). High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol, 100, 3513–17
  • Hakobyan L, Gabrielyan L, Trchounian A. (2012a). Relationship of proton motive force and the F0F1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr, 44, 495–502
  • Hakobyan L, Gabrielyan L, Trchounian A. (2012b). Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs. Int J Hydrogen Energy, 37, 6519–26
  • Hakobyan L, Gabrielyan L, Trchounian A. (2012c). Ni (II) and Mg (II) ions as factors enhancing biohydrogen production by Rhodobacter sphaeroides from mineral springs. Int J Hydrogen Energy, 37, 7482–6
  • Hallenbeck PC. (2009). Fermentative hydrogen production: Principles, progress, and prognosis. Int J Hydrogen Energy, 34, 7379–89
  • Han S-K, Shin H-S. (2004). Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy, 24, 569–77
  • Hayes ET, Wilks JC, Sanfilippo P, et al. (2006). Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiology, 6, 1--18
  • Hu H, Wood TK. (2010). An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun, 391, 1033–8
  • Hube M, Blokesch M, Bock A. (2002). Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol, 184, 3879–85
  • Igeno MI, De Mora CG, Castillo F, Caballero FJ. (1995). Halotolerance of the phototrophic bacterium Rhodobacter capsuatus E1F1 is dependent on the nitrogen source. Appl Environm Microbiol, 61, 2970–5
  • Kapdan IK, Kargi F. (2006). Bio-hydrogen production from waste materials. J Enzyme Microbial Technol, 38, 569–82
  • Kars G, Gündüz U, Rakhely G, et al. (2008). Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 33, 3056–60
  • Khanna S, Goyal A, Moholkar VS. (2012). Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol, 32, 232–65
  • Kim E-J, Kim J-S, Kim M-S, Lee LK. (2006). Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrogen Energy, 31, 531–8
  • Kim E-J, Lee M-K, Kim M-S, Lee LK. (2008). Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. Int J Hydrogen Energy, 33, 1516–21
  • Kim S, Seol E, Oh YK, et al. (2009). Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int J Hydrogen Energy, 34, 7417–27
  • King PW, Przybyla AE. (1999). Response of hya expression to external pH in Escherichia coli. J Bacteriol, 181, 5250–6
  • Klemme JH. (1989). Organic nitrogen metabolism of phototrophic bacteria. Leeuwenhoek J Microbiol, 55, 197–219
  • Kondo T, Arakawa M, Hirai T, et al. (2002). Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng, 93, 145–50
  • Kondratieva EH, Gogotov IN. (1981). Molecular hydrogen in a metabolism of microorganisms. Moscow: Nauka, 344 p (in Russian)
  • Laurinavichene TV, Chanal A, Wu LF, Tsygankov AA. (2001). Effect of O2, H2 and redox potential on the activity and synthesis of hydrogenase 2 in Escherichia coli. Res Microbiol, 152, 793–8
  • Laurinavichene TV, Tsygankov AA. (2001). H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett, 202, 121–4
  • Laurinavichene TV, Zorin NA, Tsygankov AA. (2002). Effect of redox potential on activity of hydrogenase 1 or hydrogenase 2 in Escherichia coli. Arch Microbiol, 178, 437–42
  • Levin DB, Pitt L, Love M. (2004). Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy, 29, 173–85
  • Lukey MJ, Parkin A, Roessler MM, et al. (2010). How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem, 285, 3928–38
  • Maeda T, Sanchez-Torres V, Wood TK. (2007a). Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol, 77, 879–90
  • Maeda T, Vardar G, Self WT, Wood TK. (2007b). Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnology, 7, 1--12
  • Maeda T, Sanchez-Torres V, Wood TK. (2007c). Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol, 76, 1036–42
  • Maeda T, Sanchez-Torres V, Wood TK. (2008a). Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol, 79, 77–86
  • Maeda T, Sanchez-Torres V, Wood TK. (2008b). Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol, 1, 30–9
  • Maeda T, Sanchez-Torres V, Wood TK. (2012). Hydrogen production by recombinant Escherichia coli strains. Microb Biotechnol, 5, 214–25
  • Magnani P, Doussiere J, Lissolo T. (2009). Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites. Biochim Biophys Acta, 1459, 169–78
  • Manish S, Banerjee R. (2008). Comparison of biohydrogen production processes. Int J Hydrogen Energy, 33, 279–86
  • Martinez K, de Anda R, Hernandez G, et al. (2008). Co-utilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. BMC Microb Cell Factories, 7, 1--12
  • Menon NK, Chatelus CY, Dervartanian M, et al. (1994). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol, 176, 4416–23
  • Menon NK, Robbins J, Wendt JC, et al. (1991). Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol, 173, 4851–61
  • Merugu R, Girisham S, Reddy SM. (2010). Bioproduction of hydrogen by Rhodobacter capsulatus KU002 isolated from leather effluents. Int J Hydrogen Energy, 35, 9591–7
  • Mnatsakanyan N, Bagramyan K, Trchounian A. (2004). Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase are acidic pH and in the presence of external formate. Cell Biochem Biophys, 41, 357–66
  • Mnatsakanyan N, Vassilian A, Navasardyan L, et al. (2002). Regulation of Escherichia coli formate hydrogenlyase activity by formate at alkaline pH. Curr Microbiol, 45, 281–6
  • Momirlan M, Veziroglu TN. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy, 33, 795–802
  • Mudhoo A, Forster-Carniero T, Sanchez A. (2011). Biohydrogen production and bioprocess enhancement: A review. Crit Rev Biotechnol, 31, 250–63
  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R. (2008). Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environm Microbiol, 74, 1124–35
  • Neidle EL, Kaplan S. (1993). Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol, 175, 2292–303
  • Noguchi K, Riggins DP, Eldahan KC, et al. (2010). Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE, 5, 1–7
  • Ooshima H, Takakuwa S, Katsuda T, et al. (1998). Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng, 85, 470–5
  • Paronyan AKh. (2002). Consumption of organic carbon sources and biosynthesis of lactic acid by the photosynthetic bacterium Rhodobacter D-4. Appl Biochem Microbiol, 38, 53–7
  • Pinske C, Jaroschinsky M, Sargent F, Sawers RG. (2012a). Zymographic differentiation of [Ni-Fe]-hydrogenases, 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol, 12, 1--12
  • Pinske C, McDowall JS, Sargent F, Sawers RG. (2012b). Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology, 158, 856–68
  • Poladyan A, Trchounian A. (2009). Production of molecular hydrogen by mixed-acid fermentation in bacteria and its energetics. In Trchounian A, ed. Bacterial membranes. Ultrastructure, bioelectrochemistry, bioenergetics and biophysics. Kerala (India): Research Signpost, 197–231
  • Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. (2008). Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett, 278, 48–55
  • Richard DJ, Sawers G, Sargent F, et al. (1999). Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology javascript:AL get(this, ‘jour', ‘Microbiology.'), 145, 2903–12
  • Riondet C, Cachon R, Wache Y, et al. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol, 182, 620–6
  • Rossmann R, Sauter M, Lottspeich F, Bock A. (1994). Maturation of the large subunit (HycE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem, 220, 377–84
  • Rossmann R, Sawers G, Bock A. (1991). Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol, 5, 2807–14
  • Rupprecht J, Hankamer B, Mussgnung JH, et al. (2006). Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol, 72, 442–9
  • Sanchez-Torres V, Maeda T, Wood TK. (2009). Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli. Appl Environ Microbiol, 75, 5639–46
  • Sanchez-Torres V, Yusoff MZM, Nakano C, et al. (2013). Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrogen Energy, 38, 3905–12
  • Sarma SJ, Brar SK, Sydney EB, et al. (2012). Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrogen Energy, 37, 6473–90
  • Sasikala K, Ramana ChV, Rao PR. (1991). Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 16, 597–601
  • Sasikala K, Ramana ChV, Rao PR. (1995). Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 20, 123–6
  • Sauter M, Bohm R, Bock A. (1992). Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol, 6, 1523–32
  • Schlensog V, Bock A. (1990). Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol, 4, 1319–27
  • Selembo PA, Perez JM, Lloyd WA, Logan BE. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng, 104, 1098–106
  • Self WT, Hasona A, Shanmugam KT. (2004). Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol, 186, 580–7
  • Seol E, Jang Y, Kim S, et al. (2012). Engineering of formate-hydrogen lyase gene cluster for improved hydrogen production in Escherichia coli. Int J Hydrogen Energy, 37, 15045–51
  • Skibinski DAG, Golby P, Chang Y-S, et al. (2002). Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. J Bacteriol, 184, 6642–53. i
  • Slonczewski JL, Fugisawa M, Dopson M, Krulwich TA. (2009). Cytoplasmic pH measurements and homeostasis in bacteria and archaea. Adv Microb Physiol, 55, 1–79
  • Trchounian A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun, 315, 1051–7
  • Trchounian A, Bagramyan K, Poladyan A. (1997). Formate hydrogenlyase is needed for proton-potassium exchange through the F0F1-ATPase and the TrkA system in anaerobically grown and glycolysing Escherichia coli. Curr Microbiol, 35, 201–6
  • Trchounian A, Ohanjanyan Y, Bagramyan K, et al. (1998). Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Biosci Rep, 18, 143–54
  • Trchounian K, Blbulyan S, Trchounian A. (2013a). Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr, 45, 253--260
  • Trchounian K, Pinske C, Sawers RG, Trchounian A. (2011a). Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr, 43, 645–50
  • Trchounian K, Pinske C, Sawers G, Trchounian A. (2012b). Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys, 62, 433–40
  • Trchounian K, Poladyan A, Trchounian A. (2009). Relation of potassium uptake to proton transport and activity of hydrogenases in Escherichia coli, grown at a low pH. Biochemistry (Moscow): Membr Cell Biol, 3, 144–51
  • Trchounian K, Poladyan A, Vassilian A, Trchounian A. (2012c). Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: Dependence on fermentation substrate, pH and F0F1-ATPase. Crit Rev Biochem Mol Biol, 47, 236–49
  • Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A. (2011b). Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrogen Energy, 36, 4323–31
  • Trchounian K, Soboh B, Sawers RG, Trchounian A. (2013b). Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Cell Biochem Biophys, 66, 103--108
  • Trchounian K, Trchounian A. (2009). Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy, 34, 8839–45
  • Trchounian K, Trchounian A. (2013). Escherichia coli hydrogenase 4 (hyf) and hydrogenase 2 (hyb) contribution in H2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrogen Energy, 38, 3919–27
  • Tsygankov AA, Fedorov AS, Laurinavichene TV, et al. (1998). Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol, 49, 102–7
  • Uyar B, Eroglu I, Yücel M, et al. (2007). Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy, 32, 4670–7
  • Varga ME, Weiner JH. (1995). Physiological role of GlpB of anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. Biochem Cell Biol, 73, 147–53
  • Vasilyeva L, Miyake M, Khatipov E, et al. (1999). Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system. J Biosci Bioeng, 87, 619–24
  • Wang J, Wan W. (2009). Factors influencing fermentative hydrogen production. Int J Hydrogen Energy, 34, 799–811
  • Wu L-F, Mandrand-Berthelot MA. (1987). Regulation of the fdhF gene encoding the selenopolypeptide for benzyl viologen-linked formate dehydrogenase in Escherichia coli. Mol Gen Genetics, 209, 129–34
  • Xu X, Abo M, Okubo A, Yamasaki S. (1998). Trehalose as osmoprotectant in Rhodobacter sphaeroides f. sp. denitrificanse IL106. Biosci Biotechnol Biochem, 62, 334–7
  • Zbell AL, Maier RJ. (2009). Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar typhimurium. Appl Environm Microbiol, 75, 1456–9
  • Zhu H, Fang HHP, Zhang T, Beaudette LA. (2007). Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy, 32, 4112–18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.