1,246
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation

, , , , &
Pages 114-128 | Received 27 Apr 2012, Accepted 15 May 2013, Published online: 13 Aug 2013

References

  • Ahmad, A, Mukherjee, P, Senapatib S, et al. (2003a). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28, 313–8
  • Ahmad A, Satyajyoti S, Khan MI, et al. (2003b). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19, 3550–3
  • Ahmad A, Satyajyoti S, Khan MI, et al. (2003c). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnol, 14, 824–8
  • Akbarzadeh A., Samiei M, Davaran S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett, 7, 144–56
  • Akin D, Sturgis J, Ragheb K, et al. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotech, 2, 441–9
  • Alphandéry E, Carvallo C, Menguy N, Chebbi I. (2011). Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phys Chem C, 115, 11920–4
  • Alvarez LH, Cervantes FJ. (2011). (Bio)nanotechnologies to enhance environmental quality and energy production. J Chem Technol Biotechnol, 86, 1354–63
  • Anceno AJ, Bonduush I, Shipin OV, Dutta J. (2010). Nanoparticle self-assembly via facile (bio)chemistry: charge-stabilized metal nanoparticles on microbial cell surfaces. J Bionanosci, 4, 1–6
  • Andreu A, Fairweather N, Miller AD. (2008). Clostridium neurotoxin fragments as potential targeting moieties for liposomal gene delivery to the CNS. Chem Bio Chem, 9, 219–31
  • Ansari F, Grigoriev P, Libor S, et al. (2009). DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotech Bioeng, 102, 1505–12
  • Astruc D, Lu F, Aranzaes JR. (2005). Nanoparticles as recyclable catalysts: the fast-growing frontier between homogeneous and heterogeneous catalysts. Angew Chem Int Ed, 44, 7852–72
  • Baesman SM, Bullen TD, Dewald J, et al. (2007). Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol, 73, 2135–43
  • Bai HJ, Zhang ZM, Gong J. (2006). Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett, 28, 1135–9
  • Bai HJ, Zhang ZM, Guo Y, Jia W. (2009a). Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res Lett, 4, 717–23
  • Bai HJ, Zhang ZM, Guo Y, Yang GE. (2009b). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Coll Surf B, Biointerf, 70, 142–6
  • Bai HJ, Zhang ZM. (2009). Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett, 63, 764–6
  • Bai HJ, Yang BS, Chai CJ, et al. (2011). Green synthesis of silver nanoparticles using Rhodobacter Sphaeroides. World J Microbiol Biotechnol, 27, 2723–8
  • Bansal V, Rautaray D, Ahmad A, Sastry M. (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem, 14, 3303–5
  • Bansal V, Sanyal A, Rautaray D, et al. (2005a). Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater, 17, 889–92
  • Bansal V, Rautray D, Bharde A, et al. (2005b). Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem, 15, 2583–9
  • Bar H, Bhui DK, Sahoo GP, et al. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Coll Surf A: Physicochem Eng Aspect, 339, 134–9
  • Baxter-Plant V, Mikheenko IP, Macaskie LE. (2003). Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation, 14, 83–90
  • Bazylinski DA, Frankel RB, Jannasch HW. (1988). Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature, 334, 518–9
  • Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB. (1993). Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol, 160, 35–42
  • Bazylinski DA, Frankel RB. (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2, 217–30
  • Beveridge TJ, Murray RGE. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol, 141, 876–87
  • Bharde A, Wani A, Shouche Y, et al. (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc, 127, 9326–7
  • Bharde A, Rautray D, Bansal V, et al. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–41
  • Bharde A, Kulkarni A, Rao M, et al. (2007). Bacterial enzyme mediated biosynthesis of gold nanoparticles. J Nanosci Nanotechnol, 7, 4369–77
  • Bhainsa KC, D’Souza SF. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B: Biointerf, 47, 160–4
  • Birla SS, Tiwari VV, Gade AK, et al. (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol, 27, 76–83
  • Blakemore RP. (1975). Magnetotatic bacteria. Science, 190, 377–9
  • Blakemore RP. (1982). Magnetotatic bacteria. Ann Rev Microbiol, 36, 217–38
  • Bonneville S, Van Cappellen P, Behrends T. (2004). Microbial reduction of iron(III) oxyhydroxides, effects of mineral solubility and availability. Chem Geol, 212, 255–68
  • Bosch J, Heister K, Hofmann T, Meckenstock RU. (2010). Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl Environ Microbiol, 76, 184–9
  • Bosch J, Lee KY, Jordan G, et al. (2012). Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Env Sci Technol, 46, 2095–101
  • Bose S, Hochella MF Jr, Gorby YA, et al. (2009). Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta, 73, 962–76
  • Bregar VB. (2004). Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Transact. Magnetics, 40, 1679–84
  • Bucak S, Jones DA, Laibinis PE, Hatton TA. (2003). Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog, 19, 477–84
  • Bunge M, Sobjerg LS, Rotaru AE, et al. (2010). Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol Bioeng, 107, 206–15
  • Cameron CT, Reese RN, Mehra RK, et al. (1989). Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature, 338, 596–7
  • Chan CS, De Stasio G, Weich SA, et al. (2004). Microbial polysaccharides template assembly of nanocrystal fibers. Science, 303, 1656–8
  • Chang YC, Chen DH. (2005a). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Coll Interf Sci, 283, 446–51
  • Chang YC, Chen DH. (2005b). Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromol Bioscience, 5, 254–61
  • Che G, Lakshmi BB, Fisher ER, Martin CR. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393, 346–8
  • Chen Z, Gao L. (2007). A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles. Mater Res Bulletin, 42, 1657–61
  • Chidambaram D, Hennebel T, Taghavi S, et al. (2010). Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol, 44, 7635–40
  • Chirita M, Grozescu I. (2009). Fe2O3 – Nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem Bull, 54, 1–8
  • Coker VS, Telling ND, van der Laan G, et al. (2013). Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano, 3, 1922–8
  • Creamer NJ, Mikheenko IP, Yong P, et al. (2007). Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catal Today, 128, 80–7
  • Cunningham DP, Lundie LL. (1993). Precipitation of cadmium by Clostridium thernoaceticum. Appl Environ Microbiol, 59, 7–14
  • De Windt W, Aelterman P, Verstraete W. (2005). Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microb, 7, 314–25
  • Deepak V, Umamaheshwaran PS, Guhan K, et al. (2011). Synthesis of gold and silver nanoparticles using purified URAK. Coll Surf B, Biointerf, 86, 353–8
  • Dehner CA, Barton L, Maurice PA, Dubois JL. (2011). Size-dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium. Environ Sci Technol, 45, 977–83
  • Dehner C, Morales-Soto N, Behera RK, et al. (2013). Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa. J Biol Inorg Chem, 18, 371–81
  • Deplanche K, Macaskie LE. (2008). Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng, 99, 1055–64
  • Deplanche K, Caldelari I, Mikheenko IP, et al. (2010). Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology, 156, 2630–40
  • Derjaguin B, Landau L. (1945). Theory of highly charged lyophobic sols and adhesion of highly charged-particles in solutions of electrolytes. Hurnal Eksperimentallnoi I Teoreticheskoi Fiziki, 15, 663–82
  • Derjaguin B, Landau L. (1993). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged-particles in solutions of electrolytes. Progress Surf Sci, 43, 30–59
  • Diegoli S, Manciulea AL, Begum S, et al. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecule. Sci Tot Environ, 402, 51–61
  • Durán N, Marcato PD, Alves OL, et al. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobio-technol, 3, 1–7
  • Eltzholtz JR, Iversen BB. (2011). High-temperature and high-pressure pulsed synthesis apparatus for supercritical production of nanoparticles. Rev Sci Instrum, 82, 84–102
  • Evanoff DD, Chumanov G. (2004). Size-controlled synthesis of nanoparticles. 1. “Silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem B, 108, 13948–56
  • Ewert KK, Evans HM, Bouxsein NF, Safinya CR. (2006). Dendritic cationic lipids with highly charged headgroups for efficient gene delivery. Bioconjugate Chem, 17, 877–88
  • Fan Y, Xu S, Schaller R, et al. (2010). Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens Bioelectron, 26, 1908–12
  • Faraji M, Yamini Y, Tahmasebi E, et al. (2010). Cetyltrimethylammonium bromide-coated magnetite nanoparticles as highly efficient adsorbent for rapid removal of reactive dyes from the textile companies’ wastewaters. J Iran Chem Soc, 7, S130–44
  • Faria PCC, Orfão JJM, Pereira MFR. (2005). Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Res, 39, 1461–70
  • Faria PCC, Orfão JJM, Figueiredo JL, Pereira MFR. (2008). Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon. Appl Surf Sci, 254, 3497–503
  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem, 393, 81–95
  • Feng Y, Yu Y, Wang Y, Lin X. (2007). Biosorption and Bioreduction of Trivalent Aurum by Photosynthetic Bacteria Rhodobacter capsulatus. Curr Microbiol, 55, 402–8
  • Fu M, Li Q, Sun D, et al. (2006). Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese J Chem Eng, 14, 114–7
  • Gade AK, Bonde P, Ingle AP, et al. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioen, 2, 243–7
  • Gauthier D, Sobjerg LS, Jensen KM, et al. (2010). Environmentally benign recovery and reactivation of palladium from industrial waste by using gram-negative bacteria. Chem Sus Chem, 3, 1036–9
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, et al. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Coll Surf B, Biointerf, 74, 328–35
  • Harada M, Abe D, Kimura Y. (2005). Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures. J Colloid Interface Sci, 292, 113–21
  • Hashemian S. (2010). MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138. African J Biotechnol, 9, 8667–71
  • Hashimoto H, Yokoyama S, Asaoka H, et al. (2007). Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater, 310, 2405–7
  • He F, Zhao A. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol, 39, 3314--20
  • He F, Zhao A. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol, 41, 6216--21
  • He SY, Guo ZR, Zhang Y, et al. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett, 61, 3984–7
  • He S, Zhang Y, Guo Z, Gu N. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog, 24, 476–80
  • Hennebel T, Simoen H, De Windt W, et al. (2009). Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnol Bioengin, 102, 995–1002
  • Hennebel T, Van Nevel S, Verschuere S, et al. (2011). Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol, 91, 1435–45
  • Holmes JD, Richardson DJ, Saed S, et al. (1997). Cadmium-specific formation of metal sulfide ‘Q-particles' by Klebsiella pneumoniae. Microbiol, 143, 2521–30
  • Hristovski K, Baumgardener A, Westerhoff P. (2007). Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater, 147, 265–74
  • Huang CP, Juang CP, Morehart K, Allen L. (1990). The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Wat Res, 24, 433–9
  • Humphries AC, Macaskie LE. (2005). Reduction of Cr(VI) by palladized biomass of Desulfovibrio vulgaris NCIMB 8303. J Chem Technol Biotechnol, 80, 1378–82
  • Ingle A, Rai MK, Gade A, Bawaskar M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanop Res, 11, 2079–85
  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA. (2008). Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res, 41, 1578–86
  • Jain D, Kachhwaha S, Jain R, et al. (2010). Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. India J Exp Biol, 48, 1152–6
  • Jha AK, Prasad K, Kulkarni AR. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Coll Surf B, 71, 226–9
  • Jogler C, Schuler D. (2009). Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol, 63, 501–21
  • Jucker BA, Zehnder AJB, Harms H. (1998). Quantification of polymer interactions in bacterial adhesion. Env Sci Technol, 32, 2909–15
  • Judy JD, Unrine JM, Bertsch PM. (2011). Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol, 45, 776–81
  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mat Lett, 65, 1014–7
  • Kalimuthu K, Babu RS, Venkataraman D, et al. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B Biointerf, 65, 150–3
  • Kannan N, Mukunthan KS, Balaji S. (2011). A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. CollSurf B Biointerf, 86, 378–83
  • Kashefi K, Tor JM, Nevin KP, Lovley DR. (2001). Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol, 67, 3275–9
  • Khaleel A, Kapoor PN, Klabunde KJ. (1999). Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater, 11, 459–68
  • Khan SS, Mukherjee A, Chandrasekaran N. (2012). Adsorptive removal of silver nanoparticles (SNPs) from aqueous solution by Aeromonas punctata and its adsorption isotherm and kinetics. Colloids Surf B Biointerfaces, 92, 156–60
  • Kim J, Grate JW. (2005). Nano-biotechnology in using enzymes for environmental remediation: single-enzyme nanoparticles. In: Karn B, Masciangioli T, Zhang W, Colvin V, Alivisatos P, eds. ACS Symposium Series: Nanotechnology and the environment: applications and implications, Washington, D.C., 220–5
  • Klaus T, Joerger R, Olsson E, Granqvist CG. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA, 96, 13611–4
  • Ko CH, Park JG, Park JC, et al. (2007). Surface status and size influences of nickel nanoparticles on sulfur compound adsorption. Appl Surf Sci, 253, 5864–7
  • Koebel MM, Jones LC, Somorjai GA. (2008). Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J Nanop Res, 10, 1063–9
  • Koneracká M, Kopčanský P, Timko M et al. (2006). Immobilization of enzymes on magnetic particles. In: Guisan JM, ed. Methods in biotechnology: immobilization of enzymes and cells. Totowa: Hummana Press Inc, 217–228
  • Konishi Y, Ohno K, Saitoh N, et al. (2007a). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol, 128, 648–53
  • Konishi Y, Tsukiyama T, Tachimi T, et al. (2007b). Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta, 53, 186–92
  • Kowshik N, Vogel W, Kulkarni SK, et al. (2002). Microbial synthesis of semiconductors CdS nanoparticles, their characterization and their use in the fabrication of ideal diode. Biotechnol Bioeng, 87, 583
  • Krumov N, Odera S, Perner-Nochta I, et al. (2007). Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol, 132, 481–6
  • Krumov N, Perner-Nochta I, Oder S, et al. (2009). Production of inorganic nanoparticles by microorganisms. Chem Eng Technol, 32, 1026–35
  • Kubo T, Sugita T, Shimose S, et al. (2000). Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol, 17, 309–16
  • Kumar SA, Abyaneh MK, Gosavi SW, et al. (2007a). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett, 29, 439–45
  • Kumar SA, Abyaneh MK, Gosavi SW, et al. (2007b). Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem, 47, 191–5
  • Kumar U, Shete A, Harle AS, et al. (2008). Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater, 20, 1484–91
  • Kumar CG, Mamidyala SK, Das B, et al. (2010). Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. J Microbiol Biotechnol, 20, 1061–8
  • Kumar CG, Mamidyala SK. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Coll Surf B Biointerf, 84, 462–6
  • Lee JH, Huh YM, Jun YW, et al. (2006). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med, 13, 95–9
  • Lee D, Khaja S, Velasquez-Castano JC, et al. (2007). In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Mater, 6, 765–9
  • Lee C, Kim JY, Lee WI, et al. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol, 42, 4927--33
  • Lee C, Sedlak DL. (2008). Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ Sci Technol, 42, 8528–33
  • Lengke M, Fleet ME, Southam G. (2006a). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir, 22, 2780–7
  • Lengke M, Ravel B, Fleet ME, et al. (2006b). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol, 40, 6304–9
  • Lengke M, Southam G. (2006). Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta, 70, 3646–61
  • Lengke MF, Fleet ME, Southam G. (2007). Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir, 23, 8982–7
  • Li B, Du Y, Dong S. (2009). DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal Chim Acta, 644, 78–82
  • Ling L, Maohong F, Robert B, et al. (2006). Synthesis, Properties and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol, 36, 405–31
  • Liu X, Xing J, Guan Y, et al. (2004). Synthesis of amino-silane modified superpara-magnetic silica supports and their use for protein immobilization. J Coll Surf A, 238, 127–31
  • Liu WT. (2006). Nanoparticles and their biological and environmental applications. J Biosci Bioeng, 102, 1–7
  • Liskowitz JJ, Liskowitz MJ, Chen S. (2009). Reactive atomized zero valent iron enriched with sulfur and carbon to enhance corrosivity and reactivity of the iron and provide desirable reduction products. Patent application number: 20090191084. http://www.faqs.org/patents/app/20090191084
  • Lloyd JR, Yong P, Macaskie LE. (1999). Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol, 64, 4607–9
  • Lovley DR, Stolz JF, Nord GL, Phillips EJP. (1987). Anaerobic production of magnetite by a dissimilatory iron reducing microorganism. Nature, 330, 252–4
  • Lovley DR. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Ver, 55, 259–87
  • Luef B, Fakra SC, Csencsits R, et al. (2013). Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J, 7, 338–50
  • Lukhele LP, Bhekie BM, Momba MNB, Krause RWM. (2010). Water disinfection using novel cyclodextrin polyurethanes containing silver nanoparticles supported on carbon nanotubes. J Appl Sci, 10, 65–70
  • Ma H, Yin B, Wang S, et al. (2004). Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem, 5, 68–75
  • Mak SY, Chen DH. (2004). Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pig, 61, 93--8
  • Malik PK. (2004). Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. J Hazard Mater B, 113, 81–8
  • Mandal S, Selvakannan PR, Phadtare S, et al. (2002). Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indian Acad Sci (Chem Sci), 114, 513–20
  • Mann S, Sparks NHC, Frankel RB, et al. (1990). Biomineralization of ferromagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258–61
  • Marre S, Baek J, Park J, et al. (2009). High-pressure/high-temperature microreactors for nanostructure synthesis. J Labor Autom, 14, 367–74
  • Marshall MJ, Beliaev AS, Dohnalkova AC, et al. (2006). c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol, 4, 1324–33
  • Marshall MJ, Plymale AE, Kennedy DW, et al. (2008). Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1. Environ Microbiol, 10, 125–36
  • Masciangioli T, Zhang WX. (2003). Environmental technologies at the nanoscale. Environm Sci Technol, 37, 102A–8A
  • Mikheenko IP, Rousset M, Dementin S, Macaskie LE. (2008). Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl Environ Microbiol, 74, 6144–6
  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, et al. (2009). Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia, the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull, 44, 1415–21
  • Moon J-W, Yeary LW, Rondinone AJ, et al. (2007). Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nanosized magnetites. J Magn Magn Mater, 313, 283–92
  • Moores A, Goettmann F. (2006). The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem, 30, 1121–32
  • Mosiniewicz-Szablewska E, Safarikova M, Safarik I. (2009). Magnetic studies of ferrofluid-modified microbial cells. J Nanosci Nanotechnol, 10, 2531--36
  • Moskowitz BM, Bazylinski DA, Egli R, et al. (2008). Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophys J Int, 174, 75–92
  • Mukherjee P, Ahmad A, Mandal D, et al. (2001). Bioreduction of ions by the fungus Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed, 40, 3585–8
  • Mukherjee P, Senapati S, Mandal D, et al. (2002). Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. Chem Bio Chem, 3, 461–3
  • Murawala P, Phadnis SM, Bhonde RR, Prasad BLV. (2009). In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Coll Surf B Biointerf, 73, 224–8
  • Nair B, Pradeep T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des, 2, 293–8
  • Namasivayam SKR, Gnanendra KE, Reepika R. (2010). Synthesis of silver nanoparticles by Lactobacillus acidophilus 01 strain and evaluation of its in vitro genomic DNA toxicity. Nano-Micro Lett, 2, 160–3
  • Nangia Y, Wangoo N, Sharma S, et al. (2009). Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett, 94, 233901
  • Neal AL. (2008). What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicol, 17, 362–71
  • Ng CK, Sivakumar K, Liu X et al. (2013). Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng, DOI 10.1002/bit.24856
  • Noubactep C. (2010). The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA, 36, 663–70
  • Ogi T, Saitoh N, Nomura T, Konishi Y. (2010). Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res, 12, 2531–9
  • Oliveira LCA, Rios RVRA, Fabris JD, et al. (2002). Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 40, 2177–83
  • Overbeek T. (1999). DLVO theory – Milestone of 20th century colloid science – Preface. Adv Coll Interf Sci, 83, IX–XI
  • Parikh RY, Singh S, Prasad BLV, et al. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp., towards understanding biochemical synthesis mechanism. Chem Bio Chem, 9, 1415–22
  • Patnaik S, Arif M, Pathak A, et al. (2010). Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics. Nanomedicine: Nanotechnol Biol Med, 6, 344–54
  • Pédrot M, Le Boudec A, Davranche M, et al. (2011). How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?. J Colloid Interface Sci, 359, 75–85
  • Pellet-Rostaing S, Favre-Reguillon A, Lemaire M. (2005). Smart nanomaterials for asymmetric catalysis, deep desulfurization of gas oils and ion separation. Actualite Chimique, 98–107. (Suppl): 290–291
  • Ponder SM, Darab JG, Bucher J, et al. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater, 13, 479–86
  • Posfai M, Buseck PR, Bazylinski DA, Frankel RB. (1998). Iron sulfides from magnetotactic bacteria, structure, composition, and phase transitions. Am Mineral, 83, 1469–81
  • Prakash A, Sharma S, Ahmad N, et al. (2010). Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol, 1, 71–9
  • Prasad K, Jha AK, Kulkarni AR. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett, 2, 248–50
  • Prasad K, Jha AK, Prasad K, Kulkarni AR. (2010). Can microbes mediate nano-transformation?. Indian J Phys, 84, 1355–60
  • Qu S, Huang F, Yu S, et al. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater, 160, 643–7
  • Rai M, Durn N. (2011). Metal Nanoparticles in Microbiology. London, Springer
  • Ramanathan R, Field MR, O'Mullane AP, et al. (2013). Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale, 5, 2300–6
  • Rangnekar A, Sarma TK, Singh AK, et al. (2007). Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir, 23, 5700–6
  • Ranzoni A, Sabatte G, van Ijzendoorn LJ, Prins MW. (2012). One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano, 6, 3134–41
  • Rautaray D, Ahmad A, Sastry M. (2004). Biological synthesis of metal carbonate minerals using fungi and actinomycetes. J Mater Chem, 14, 2333– 40
  • Rawat M, Singh D, Saraf S., Saraf S. (2006). Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull, 29, 1790–8
  • Reddy KR. (2010). Nanotechnology for site remediation: dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. 6th International Congress on Environmental Geotechnics, 2010, New Delhi, India, pp 165–82
  • Redwood MD, Deplanche K, Baxter-Plant VS, Macaskie LE. (2008). Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. Biotechnol Bioeng, 99, 1045–54
  • Riddin TL, Gericke M, Whiteley CG. (2006). Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp lycopersici using response surface methodology. Nanotechnol, 17, 3482–9
  • Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB. (1995a). The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Coll Surf B: Biointerf, 4, 191–7
  • Rijnaarts HHM, Norde W, Bouwer EJ, et al. (1995b). Reversibility and mechanism of bacterial adhesion. Coll Surf B: Biointerf, 4, 5–22
  • Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB. (1999). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Coll Surf B: Biointerf, 14, 179–95
  • Roden EE, Zachara JM. (1996). Microbial reduction of crystalline iron(III) oxides, influence of oxide surface area and potential for cell growth. Environ Sci Technol, 30, 1618–28
  • Roh Y, Lauf RJ, McMillan AD, et al. (2001). Microbial synthesis and the characterization of metal substituted magnetites. Solid State Commun, 118, 529–34
  • Ryu J, Kim SW, Kang K, Park CB. (2010). Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano, 4, 159–64
  • Safarik I, Safarikova M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5, 19–25
  • Safarikova M, Ptackova L, Kibrikova I, Safarik I. (2005). Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere, 59, 831–5
  • Safarikova M, Pona BMR, Mosinicwicz Szablewska E, et al. (2008). Dye adsorption on magnetically modified Chlorella vulgaris cells. Fres Environ Bulletin, 17, 486–92
  • Safarikova M, Maderova Z, Safarik I. (2009). Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis. Food Res Int, 42, 521–4
  • Saifuddin N, Wong CW, Yasumira AAN. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem, 6, 61–70
  • Sakaguchi T, Burgess JG, Matsunaga T. (1993). Magnetite formation by a sulphate reducing bacterium. Nature, 365, 47–9
  • Selvakannan PR, Swami A, Srisathiyanarayanan D, et al. (2004). Synthesis of aqueous Au core−Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air−water interface. Langmuir, 20, 7825–36
  • Shahverdi AR, Minaeian S, Shahverdi HR, et al. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria, a novel biological approach. Proc Biochem, 42, 919–23
  • Shan GB, Xing JM, Luo MF, et al. (2003). Immobilization of Pseudomonas delafieldii R-8 with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett, 25, 1977–81
  • Shan GB, Xing JM, Zhang HY, Liu HZ. (2005a). Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol, 71, 4497–502
  • Shan GB, Zhang HY, Cai W, et al. (2005b). Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophysical J, 89, 58–60
  • Sharma YC, Srivastava V, Upadhyay SN, Weng CH. (2008). Alumina nanoparticles for the removal of Ni(II) from aqueous solutions. Ind Eng Chem Res, 47, 8095–100
  • Sharma YC, Srivastava V, Weng CH, Upadhyay SN. (2009). Removal of Cr(VI) From Wastewater by Adsorption on Iron Nanoparticles. Canadian J Chem Eng, 87, 921–9
  • Shin KH, Cha DK. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72, 257–62
  • Sinha A, Khare SK. (2011). Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol, 102, 4281–4
  • Sintubin L, De Windt W, Dick J, et al. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol, 84, 741–9
  • Staniland S, Williams W, Telling N, et al. (2008). Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol, 3, 158–62
  • Straub KL, Hanzlik M, Buchholz-Cleven BEE. (1998). The use of biologically produced ferrihydrate for the isolation of novel iron-reducing bacteria. System Appl Microbiol, 21, 442–9
  • Sun YP, Li X, Cao J, et al. (2006). Characterization of zero-valent iron nanoparticles. Adv Coll Interf Sci, 120, 47–56
  • Sun S, Ma M, Qiu N, et al. (2011). Affinity adsorption and separation behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin. Coll Surf B: Biointerf, 88, 246–53
  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF. (2002). Nanometre-size products of uranium bioreduction. Nature, 419, 134
  • Sweeney RY, Mao C, Gao X, et al. (2004). Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol, 11, 1553–9
  • Tanaka M, Arakaki A, Staniland SS, Matsunaga T. (2010). Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl Environ Microbiol, 7616, 5526–32
  • Tao AR, Habas S, Yang P. (2008). Shape control of colloidal metal nanocrystals. Small, 4, 310–25
  • Towe KM, Moench TT. (1981). Electron-optical characterization of bacterial magnetite. Earth Planet Sci Lett, 52, 213–20
  • Tsang SC, Yu CH, Gao X, Tam K. (2006). Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B, 110, 16914–22
  • Tungittiplakornw W, Cohenc C, Lion L. (2005). Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol, 39, 1354–8
  • Ueji M, Harada M, Kimura Y. (2008). Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids. J Colloid Interface Sci, 322, 358–63
  • Vahabi K, Mansoori GA, Karimi S. (2011). Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei. Insciences J, 1, 65–79
  • Vigneshwaran N, Kathe AA, Varadarajan PV, et al. (2006). Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Coll Surf B: Biointerf, 53, 55–9
  • Wagner V, Dullaart A, Bock AK, Zweck A. (2006). The emerging nanomedicine landscape. Nature Biotechnol, 24, 1211–7
  • Wang CB, Zhang WX. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination TCE and PEBs. Environ Sci Technol, 31, 2154–6
  • Wen L, Lin Z, Gu P, et al. (2009). Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res, 11, 279–88
  • Wu R, Qu J, He H, Yu Y. (2004). Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. Appl Catal B, 48, 49–56
  • Wu R, Qu J. (2005). Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol, 80, 20–7
  • Xie C, Xu F, Huang X, Dong C, Ren J. (2010). Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays. J Am Chem Soc, 131, 12763–70
  • Xiu Z, Jin Z, Li T, et al. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating Trichloroethylene. Biores Technol, 101, 1141–6
  • Xu S, Liu H, Fan Y, et al. (2012). Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol, 93, 871–80
  • Yan B, Wrenn BA, Basak S, et al. (2008). Microbial reduction of Fe(III). in hematite nanoparticles by Geobacter sulfurreducens. Environ Sci Technol, 42, 6526–31
  • Yang HH, Zhang SQ, Chen XL, et al. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem, 76, 1316–21
  • Yang N, Zhu S, Zhang D, Xu S. (2008). Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett, 62, 645–7
  • Yavuz H, Denizli A, Gungunes H, et al. (2006). Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol, 52, 253–60
  • Yellen BB, Forbes ZG, Halverson DS, et al. (2005). Targeted drug delivery to magnetic implants for therapeutic applications. J Magn Magn Mater, 293, 647–54
  • Yee CK, Jordan R, Ulman A, et al. (1999). Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir, 15, 3486–91
  • Yong P, Rowsen NA, Farr JPG, et al. (2002). Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng, 80, 369–79
  • Zhang C, Vali H, Romanek CS, et al. (1998). Formation of single-domain magnetite by a thermophilic bacterium. Am Mineral, 83, 1409–18
  • Zhang H, Li Q, Lu Y, et al. (2005). Biosorption and bioreduction of diamine silver complex by Corynebacterium sp. J Chem Technol Biotechnol, 80, 285–90
  • Zhang G, Qu J, Liu H, et al. (2007a). CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere, 68, 1058–66
  • Zhang G, Qu J, Liu H, et al. (2007b). Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res, 41, 1921–8
  • Zhang X, He X, Wang K, et al. (2009). Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanisci Nanotecnol, 9, 5738–44
  • Zhang X, Yan S, Tyagi RD, Surampalli RY. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82, 489–94
  • Zhang T, Kim B, Levard C, et al. (2012). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Env Sci Technol, 46, 6950–8
  • Zhou L, Gao C, Xu W. (2010). Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. Appl Mater Interf, 2, 1483–91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.