1,352
Views
91
CrossRef citations to date
0
Altmetric
Review Article

Microbial production of specialty organic acids from renewable and waste materials

, &
Pages 497-513 | Received 24 Jun 2013, Accepted 13 Jan 2014, Published online: 22 Apr 2014

References

  • Alonso S, Rendueles M, Díaz M. (2011). Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresour Technol, 102, 9730–6
  • Alonso S, Rendueles M, Díaz M. (2012). Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol, 109, 140–7
  • Alonso S, Rendueles M, Díaz M. (2013a). Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol, 134, 134–42
  • Alonso S, Rendueles M, Díaz M. (2013b). Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv, 31, 1275–91
  • Blankschien MD, Clomburg JM, Gonzalez R. (2010). Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng, 12, 409–19
  • Blumhoff ML, Steiger MG, Mattanovich D, Sauer M. (2013). Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng, 19, 26–32
  • Borges ER, Pereira Jr N. (2011). Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol, 38, 1001–11
  • Brown SH, Bashkirova L, Berka R, et al. (2013). Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol, 97, 8903–12
  • Burk MJ, Pharkya P, Van Dien SJ, et al. (2013). Methods for the synthesis of acrylic acid and derivatives from fumaric acid. European Patent Application Pub. No.: EP 2 543 657 A3
  • Cao Y, Cao Y, Lin X. (2011). Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biotechnol, 38, 649–56
  • Chan S, Kanchanatawee S, Jantama K. (2012). Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresour Technol, 103, 329–36
  • Chia M, Nguyen TBV, Choi WJ. (2008). DO-stat fed-batch production of 2-keto-d-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 78, 759–65
  • Curran KA, Alper HS. (2012). Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng, 14, 289–97
  • Curran KA, Leavitt J, Karim AS, Alper HS. (2013). Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng, 15, 55–66
  • Coons R. (2010). Start-up advances biobased acrylic acid. Chem Week, 172, 9
  • Deng Y, Li S, Xu Q, Gao M, Huang H. (2012). Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresour Technol, 107, 363–7
  • Dishisha T, Alvarez MT, Hatti-Kaul R. (2012). Batch- and continuous propionic acid production from glycerol, using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol, 118, 553–62
  • Dishisha T, Ståhl Å, Lundmark S, Hatti-Kaul R. (2013). An economical biorefinery process for propionic acid production from glycerol and potato juice using cell density fermentation. Bioresour Technol, 135, 504–12
  • Djurdjevic I, Zelder O, Buckel W. (2011). Production of glutaconic acid in a recombinant Escherichia coli strain. Appl Environ Microbiol, 77, 320–2
  • Dwiarti L, Otsuka M, Miura S, et al. (2007). Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol, 98, 3329–37
  • IEA (International Energy Agency). (2012). IEA Bioenergy Task 42 Biorefinery. Bio-based chemicals: value added products from biorefineries
  • Feng X, Chen F, Xu H, et al. (2011). Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresour Technol, 102, 6141–6
  • Habe H, Fukuoka T, Kitamoto D, Sakaki K. (2009a). Biotechnological production of D-glyceric acid and its application. Appl Microbiol Biotechnol, 84, 445–52
  • Habe H, Shimada Y, Yakushi H, et al. (2009b). Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microbiol, 75, 7760–6
  • Hermann BG, Blok K, Patel MK. (2007). Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol, 41, 7915–21
  • Huang J, Cai J, Wang J, et al. (2011). Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol, 102, 3923–6
  • Huang Y, Li Z, Shimizu K, Ye Q. (2012). Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumonia. Bioresour Technol, 103, 351–9
  • Jang YS, Kim B, Shin JH, et al. (2012). Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng, 10, 2437–59
  • Jiang L, Wang J, Liang S, et al. (2009). Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol, 100, 3403–9
  • Jiang M, Xu R, Xi YL, et al. (2013). Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresour Technol, 135, 469–74
  • Khanna S, Goyal A, Moholkar VS. (2012). Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol, 32, 235–62
  • Klement T, Büchs J. (2013). Itaconic acid - a biotechnological process in change. Bioresour Technol, 135, 422–31
  • Kuenz A, Gallenmüller Y, Willke T, Vorlop, KD. (2012). Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol, 96, 1209–16
  • Kuivanen J, Mojzita D, Wang Y, et al. (2012). Engineering filamentous fungi for conversion of d-galacturonic acid to l-galactonic acid. Appl Environ Microbiol, 78, 8676–9683
  • Kumar V, Ashok S, Park S. (2013). Recent advances in biological production of 3–hydroxypropionic acid. Biotechnol Adv, 31, 945–61
  • Lee JW, Kim HU, Choi S, et al. (2011). Microbial production of building block chemicals and polymers. Curr Opin Biotechnol, 22, 758–67
  • Liang L, Wang J, Liang S, et al. (2009). Butyric acid fermentation in a fibrous bed bioreactor immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol, 100, 3403–9
  • Liang ZX, Li L, Li S, et al. (2012). Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioprocess Biosyst Eng, 35, 915–21
  • Li J, Zheng ZY, Fang XJ, et al. (2011). A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresour Technol, 102, 6147–52
  • Lin CSK, Luque R, Clark JH, et al. (2011). Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuel Bioprod Bioref, 6, 88–104
  • Litsanov B, Brocker M, Bott M. (2013). Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol, 6, 189–95
  • Liu YP, Zheng P, Sun ZH, et al. (2008). Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol, 99, 1736–42
  • Liu Z, Ma C, Gao C, Xu P. (2012a). Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacterium acidipropionici. Bioresour Technol, 114, 711–14
  • Liu H, Valdehuesa KN, Nisola GM, et al. (2012b). High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Bioresour Technol, 115, 244–8
  • Liu L, Zhu Y, Li J, et al. (2012c). Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol, 32, 374–81
  • Liu R, Liang L, Cao W, et al. (2013). Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresour Technol, 135, 574–7
  • Lynch M, Gyll RT, Warnecke-Lipscomb T. (2011). Method for producing 3-hydroxypropionic acid and other products. International Patent Application Pub. No.: WO 2011/038364 A1
  • Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS. (2013). Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett, 35, 831–42
  • Moon SY, Hong SH, Kim TY, Lee SY. (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J, 40, 312–20
  • Moon TS, Yoon SH, Lanza AM, et al. (2009). Production of glucaric acid from synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol, 75, 589–95
  • Moon TS, Dueber JE, Shiue E, Prather KLJ. (2010). Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng, 12, 298–305
  • Mu W, Liu F, Jia J, et al. (2009). 3-Phenyllactic acid production by substrate feeding pH-control in fed-batch fermentation of Lactobacillus sp. SK007. Bioresour Technol, 100, 5226–9
  • Nygård Y, Toivari MH, Penttilä M, et al. (2011). Bioconversion of D-xylose to D-xylonate with Kluyveromyces lactis. Metab Eng, 13, 383–91
  • Okabe M, Lies D, Kanamasa S, Park EY. (2009). Biotechnological production of itaconic acid and its biosynthesis in Aspergillus niger. Appl Microbiol Biotechnol, 85, 597–606
  • Otto C, Yovkova V, Barth G. (2011). Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol, 92, 689–95
  • Panesar PS, Kennedy JF. (2012). Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol, 32, 327–48
  • Polen T, Spelberg M, Bott M. (2013). Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol, 167, 75–84
  • Raj SM, Rathnasingh C, Jung WC, Park S. (2009). Effect of process parameters on 3-hydroxypropionic acid from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol, 84, 649–57
  • Rathnasingh C, Mohan Raj S, Lee Y, et al. (2012). Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol, 157, 633–40
  • Sauer M, Porro D, Mattanovich D, Branduardi P. (2008). Microbial production of organic acids: expanding the markets. Trends Biotechnol, 26, 100–8
  • Singh OV, Kumar R. (2007). Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol, 75, 713–22
  • Singh OV, Singh RP. (2006). Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410. J Appl Microbiol, 100, 1114–22
  • Smidt M. (2011). A sustainable supply of succinic acid. EuroBiotechNews, 10, 11–12
  • Soucaille P. (2009). Glycolic acid production by fermentation from renewable resources. United States Patent Application Pub. No.: US 2009/0155867 A1
  • Straathof AJJ, Sie S, Franco TT, et al. (2005). Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol, 67, 727–34
  • Sun WJ, Zhou YZ, Zhou Q, et al. (2012). Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Bioresour Technol, 110, 546–51
  • Takagi Y, Sugisawa T, Hoshino T. (2009). Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025. Appl Microbiol Biotechnol, 82, 1049–56
  • Thakker C, Bennett GN, San KY. (2013). Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresour Technol, 130, 398–405
  • Thakker C, Martínez I, San KY, Bennett GN. (2012). Succinate production in Escherichia coli. Biotechnol J, 7, 213–24
  • Toivari MH, Nygård Y, Kumpula EP, et al. (2012a). Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab Eng, 14, 427–36
  • Toivari MH, Nygård Y, Penttilä M, et al. (2012b). Microbial D-xylonate production. Appl Microbiol Biotechnol, 96, 1–8
  • Toivari M, Vehkomäki ML, Nygård Y, et al. (2013). Low pH D-xylonate production with Pichia kudriavzevii. Bioresour Technol, 133, 555–62
  • Verdezyne. (2011). Verdezyne opens pilot plant to produce bio-based adipic acid for renewable ‘green’ nylon. Press release
  • Wan C, Li Y, Shahbazi A, Xiu S. (2008). Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl Biochem Biotechnol, 145, 111–19
  • Wang J, Zhu J, Bennett GN, San KY. (2011). Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains. Metab Eng, 13, 328–35
  • Wang Z, Yang ST. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol, 137, 116–23
  • Warnecke T, Gill RT. (2005). Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact, 4, 25
  • Weber C, Brückner C, Weinreb S, et al. (2012). Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol, 78, 8421–30
  • Wei D, Liu X, Yang ST. (2013). Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour Technol, 129, 553–60
  • Werpy T, Petersen G. (2004). Top value-added chemicals from biomass-volume I. US Department of Energy, National Renewable Energy Laboratory (NREL), Washington, DC
  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ. (2013). Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol, 6, 87–102
  • Xu Q, Li S, Fu Y, et al. (2010). Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour Technol, 101, 62–4
  • Xu Q, Li S, Huang H, Wen J. (2012). Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv, 30, 1685–96
  • Yadav AK Chaudhari AB, Kothari RM. (2011). Bioconversion of renewable resources into lactic acid: an industrial view. Crit Rev Biotechnol, 31, 1–19
  • Yu C, Cao Y, Zou H, Xian M. (2011). Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol, 89, 573–83
  • Yu Z, Du G, Zhou J, Chen J. (2012). Enhanced α-ketoglutaric acid production in Yarrowia lipolitica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol, 114, 597–602
  • Zelle RM, de Hulster E, wan Widen WA, et al. (2008). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol, 74, 2766–77
  • Zhang A, Yang ST. (2009). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem, 44, 1346–51
  • Zhang X, Wang X, Shanmugam KT, Ingram LO. (2011). L-Malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol, 77, 427–34
  • Zhang B, Skory CD, Yang ST. (2012). Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metab Eng, 14, 512–20
  • Zheng P, Dong JJ, Sun ZH, et al. (2009). Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol, 100, 2425–9
  • Zheng Z, Chen T, Zhao M, et al. (2012). Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact, 11, 37
  • Zhu Y, Li J, Tan M, et al. (2010). Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol, 101, 8902–6
  • Zou X, Zhou Y, Yang ST. (2013). Production of polymalic and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng, 110, 2105–13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.