741
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Prospecting for hyperaccumulators of trace elements: a review

&
Pages 522-532 | Received 23 Aug 2013, Accepted 13 Jan 2014, Published online: 18 Jun 2014

References

  • Alexander EB. (1994). Serpentine soils mapped in California and Southwestern Oregon. Soil Surv Horiz, 35, 61–9
  • Ali H, Khan E, Sajad MA. (2013). Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91, 869–81
  • Alves S, Nabais C, de Lurdes Simões Goncalves M, Correia dos Santos MM. (2011). Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum growing on serpentine soils of northeast Portugal. J Plant Physiol, 168, 1715–22
  • Anawar HM, Canha N, Freitas MC, et al. (2011). Effects of different drying processes on the concentrations of metals and metalloids in plant materials. J Radioanal Nucl Chem, 289, 29–34
  • Anderson CWN, Brooks RR, Stewart RB, Simcock R. (1998). Harvesting a crop of gold in plants. Nature, 395, 553–4
  • Assuncao AGL, Martins P, Folter S, et al. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 24, 217–26
  • Baker AJM, Brooks RR. (1989). Terrestrial higher plants which accumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos G, eds. Phytoremediation of contaminated soils and waters. Boca Raton, FL: CRC Press LLC, pp. 85–107
  • Baldwin PR, Butcher DJ. (2007). Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J, 85, 297–300
  • Bani A, Echevarria G, Sulçe S, et al. (2007). In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil, 293, 79–89
  • Baroni F, Boscagli A, Protano G, Riccobono F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut, 109, 347–52
  • Bayramoglu G, Arica MY, Adiguzel N. (2012). Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil. Chemosphere, 89, 302–9
  • Bech J, Corrales I, Tume P, et al. (2012a). Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J Geochem Explor, 113, 100–5
  • Bech J, Duran P, Roca N, et al. (2012b). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor, 113, 106–11
  • Bech J, Poschenrieder C, Barceló J, Lansac A. (2002). Plants from mine spoils in the South American Area as a potential source of germplasm for phytoremediation technologies. Acta Biotechnol, 22, 5–11
  • Bhargava A, Carmona FF, Bhargava M, Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. J Environ Manage, 105, 103–20
  • Bhatia NP, Walsh KB, Baker AJM. (2005). Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot, 56, 1343–9
  • Boyd R. (2010). Elemental defenses of plants by metals. Nat Edu Knowledge, 1, 6–9
  • Boyd RS, Jaffré T. (2009). Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. In: Soil and biota of serpentine: a world view. Northeast Nature, 16, 93–110
  • Boyd RS, Martens SN. (1994). Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos, 70, 21–5
  • Broadhurst CL, Bauchan GR, Murphy CA, et al. (2013). Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. Environ Exp Bot, 87, 1–9
  • Brooks RR. (1987). Serpentine and its vegetation: a multidisciplinary approach. Portland, OR: Dioscorides Press
  • Brooks RR. (1998). Plants that hyperaccumulate heavy metals. Wallingford: CAB International
  • Brooks RR, Lee J, Reeves RD, Jaffré T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor, 7, 49–57
  • Brown TA, Shrift A. (1981). Exclusion of selenium from proteins of seleniumtolerant Astragalus species. Plant Physiol, 67, 1051–3
  • Callahan DL, Roessner U, Dumontet V, et al. (2012). Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry, 81, 80–9
  • Chaney RL, Malik M, Li YM, et al. (1997). Phytoremediation of soil metals. Curr Opin Biotech, 8, 279–84
  • Clemens S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–19
  • Clemens S, Palmgren M, Krämer U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci, 7, 309–15
  • Dahlin AS, Edwards AC, Lindström BE, et al. (2012). Revisiting herbage sample collection and preparation procedures to minimise risks of trace element contamination. Eur J Agronomy, 43, 33–9
  • De Anderande LRM, Barros LMG, Echevarria GF, et al. (2011). Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage. Environ Exp Bot, 70, 37–42
  • Faucon M-P, Ngoy Shutcha M, Meerts P. (2007). Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil, 301, 29–36
  • Feist LJ, Parker DR. (2001). Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol, 149, 61–9
  • Feng R, Wei C, Tu S, et al. (2011). Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J, 97, 38–43
  • Fernando DR, Guymer G, Reeves RD, et al. (2009). Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot, 103, 931–9
  • Galardi F, Mengoni A, Pucci S, et al. (2007a). Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: a survey of populations in nature. Environ Exp Bot, 60, 50–6
  • Galardi F, Corrales I, Mengoni A, et al. (2007b). Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environ Exp Bot, 60, 377–84
  • Ghaderian SM, Mohtadi A, Rahiminejad R, et al. (2007). Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil, 293, 91–7
  • Gisbert C, Ros R, De Haro A, et al. (2003). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun, 303, 440–5
  • Guerinot ML. (2000). The ZIP family of metal transporters. Biomembranes, 1465, 190–8
  • Ha NTH, Sakakibara M, Sano S. (2011). Accumulation of indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresource Technol, 102, 2228–34
  • Haque N, Peralta-Videa JR, Jones GL, et al. (2007). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut, 153, 362–8
  • Hatayama M, Sato T, Shinoda K, Inoue C. (2011). Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. J Biosci Bioeng, 111, 326–32
  • Hladun KR, Parker DR, Trumble JT. (2011). Selenium accumulation in the floral tissues of two Brassicaceae species and its impact on floral traits and plant performance. Environ Exp Bot, 74, 90–7
  • Hu P-J, Gan Y-Y, Tang Y-T, et al. (2012). Cellular tolerance, accumulation and distribution of cadmium in leaves of hyperaccumulator Picris divaricata. Pedosphere, 22, 497–507
  • Huang J, Charissa Y, Kochian LV, Elless MP. (2004). Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol, 38, 3412–7
  • Jabeen R, Ahmad A, Iqbal M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev, 75, 339–64
  • Jaffré T, Brooks RR, Lee J, Reeves RD. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579–80
  • Jaffré T. (1980). Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. Coll Travaux et Documents, 124, 274
  • Jaffré T, Schmid M. (1997). Accumulation du nickel par une Rubiacée de Nouvelle Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. C R Acad Sci Paris D, 278, 1727–30
  • Jiang L, Yang X, He Z. (2004). Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 55, 1179–87
  • Jin X, Yang X, Islam E, et al. (2008). Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater, 156, 387–97
  • Karimzadeh L, Heilmeier H, Merkel BJ. (2012). Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite. Chemosphere, 88, 683–7
  • Koppolu L, Agblevor LA, Clements LD. (2003). Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenerg, 25, 651–63
  • Kotrba P, Macek T, Ruml T. (1999). Heavy metal-binding peptides and proteins in plants: a review. Collect Czech Chem Commun, 64, 1057–86
  • Kotrba P, Najmanova J, Macek T, et al. (2009). Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotech Adv, 27, 799–810
  • Kovacheva P, Djingova R, Kuleff I. (2000). On the representative sampling of plants for multielement analysis. Phytol Balcan, 6, 90–102
  • Krämer U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech, 16, 133–41
  • Krämer U. (2010). Metal hyperaccumulation in plants. Ann Rev Plant Biol, 61, 517–34
  • Krämer U, Grime GW, Smith JAC, et al. (1997b). Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Methods B, 130, 346–50
  • Krämer U, Smith RD, Wenzel WW, et al. (1997a). The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hálácsy. Plant Physiol, 115, 1641–50
  • Krämer U, Talke IN, Hanikenne N. (2007). Transition metal transport. FEBS Lett, 581, 2263–72
  • Kruckeberg AR, Kruckeberg AL. (1990). Endemic metallophytes: their taxonomic, genetic and evolutionary attributes. In: Shaw AJ, ed. Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL: CRC Press Inc., 301–12
  • Lai Y, Wang Q, Yang L, Huang B. (2006). Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex. Talanta, 70, 26–31
  • Leblanc M, Petit D, Deram A, et al. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol, 94, 109–13
  • Lei M, Wan X-m, Li X-w, et al. (2013). Impacts of sulfur regulation in vivo on arsenic accumulation and tolerance of hyperaccumulator Pteris vittata. Environ Exp Bot, 85, 1–6
  • Li T, Di Z, Islam E, et al. (2011). Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J Hazard Mater, 185, 818–23
  • Li T, Tao Q, Han X, Yang X. (2013). Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii. Sci Total Environ, 454–455, 510–6
  • Li W-X, Chen T-B, Huang Z-C, et al. (2006). Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere, 62, 803–9
  • Lin W, Xiao T, Wu Y, et al. (2012). Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Chemosphere, 86, 837–42
  • Lou LQ, Ye ZH, Wong MH. (2009). A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.: a hydroponic study. J Hazard Mater, 171, 436–42
  • Lu L, Tian S, Zhang M, et al. (2010). The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. J Hazard Mater, 183, 22–8
  • Ma LQ, Komar KM, Tu C, et al. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579
  • MacNaeidhe F. (1995). Procedures and precautions used in sampling techniques and analysis of trace elements in plant matrices. Sci Total Environ, 176, 25–31
  • Maestri E, Marmiroli M, Visioli G, Marmiroli N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot, 68, 1–13
  • Markert B. (1992). Aspects of cleaning environmental materials for multi-element analysis, e.g. plant samples. Fresenius J Anal Chem, 342, 409–12
  • Markert B. (1995). Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices. Sci Total Environ, 176, 45–61
  • Martínez-Alcalá I, Hernández LE, Esteban E, et al. (2013). Responses of Noccaea caerulescens and Lupinus albus in trace elements contaminated soils. Plant Physiol Biochem, 66, 47–55
  • Mathews S, Rathinasabapathi B, Ma LQ. (2011). Uptake and translocation of arsenite by Pteris vittata L.: effects of glycerol, antimonite and silver. Environ Pollut, 159, 3490–5
  • McGrath SP, Zhao FJ. (2003). Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol, 14, 277–82
  • McGrath SP. (1998). Phytoextraction for soil remediation. In: Brooks RR, ed. Plants that hyperaccumulate heavy metals. Wallingford UK: CAB International, 261–87
  • Mertens J, Luyssaert S, Verheyen K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ Pollut, 138, 1–4
  • Mleczek M, Rutkowski P, Rissman I, et al. (2010). Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg, 34, 1410–8
  • Mohtadi A, Ghaderian SM, Schat H. (2012). A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant Soil, 352, 267–76
  • Moradi AB, Swoboda S, Robinson B, et al. (2010). Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot, 69, 24–31
  • Müller K, Daus B, Mattusch J, et al. (2013). Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Environ Pollut, 174, 128–33
  • Orchard C, León-Lobos P, Ginocchio R. (2009). Phytostabilization of massive mine wastes with native phytogenetic resources: potential for sustainable use and conservation of the native flora in north-central Chile. Ciencia e Investigación Agraria, 36, 329–52
  • Pasławski P, Migaszewski ZM. (2006). The quality of element determinations in plant materials by instrumental methods. Pol J Environ Stud, 15, 154–64
  • Peng K, Luo Ch, You W, et al. (2008). Manganese uptake and interactions with cadmium in the hyperaccumulator – Phytolacca americana L. J Hazard Mater, 154, 674–81
  • Peuke AD, Rennenberg H. (2005). Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep, 6, 497–501
  • Pollard AJ, Reeves RD, Baker AJM. (2013). Review: facultative hyperaccumulation of heavy metals and metalloids. Plant Sci, 217–218, 8–17
  • Pongrac P, Zhao FJ, Razinger J, et al. (2009). Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environ Exp Bot, 66, 479–86
  • Pratas J, Favas PJC, D'Souza R, et al. (2013). Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 90, 2216–25
  • Qiu R-L, Thangavel P, Hu P-J, et al. (2011). Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater, 186, 1425–30
  • Qu J, Luo C, Cong Q, Yuan X. (2012). Carbon nanotubes and Cu–Zn nanoparticles synthesis using hyperaccumulator plants. Environ Chem Lett, 10, 153–8
  • Qu J, Luo CQ, Hou JX. (2011). Synthesis of Zn nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. Micro Nano Lett, 6, 174–6
  • Ramsey MH, Thompson M, Halle M. (1992). Objective evaluation of precision requirements for geochemical analysis using robust analysis of variance. J Geochem Explor, 44, 23–36
  • Raskin I, Smith RD, Salt DE. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech, 8, 221–6
  • Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR. (2011). Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater, 185, 862–9
  • Reeves RD. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil, 249, 57–65
  • Reeves RD, Adiguzel N, Baker AJM. (2009). Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kızıldaäÿ Derebucak (Konya), Turkey. Turk J Bot, 33, 33–40
  • Reeves RD, Baker AJM. (2000). Metal-accumulating plants. In: Raskin I, Ensley BD, eds. Phytoremediation of toxic metals: using plants to clean up the environment. New York: John Wiley & Sons, Inc., 193–229
  • Roberts DR, Ford RG, Sparks DL. (2003). Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J Colloid Interface Sci, 263, 364–76
  • Robinson B, Kim N, Marchetti M, et al. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot, 58, 206–15
  • Rossini Oliva S, Raitio H. (2003). Review of cleaning techniques and their effects on the chemical composition of foliar samples. Boreal Environ Res, 8, 263–72
  • Sainger PA, Dhankhar D, Sainger M, et al. (2011). Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotox Environ Safe, 74, 2284–91
  • Salt DE, Blaylock M, Kumar Nanda PBA, et al. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol, 13, 468–74
  • Seth CS. (2012). A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev, 78, 32–62
  • Shallari S, Schwartz C, Hasko A, Morcl JL. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ, 209, 133–42
  • Shan XQ, Wang HO, Zhang SZ, et al. (2003). Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicranopteris dichotoma. Plant Sci, 165, 1343–53
  • Shen ZG, Liu YL. (1998). Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiol Commun, 34, 133–9
  • Sheoran V, Sheoran AS, Poonia P. (2013). Phytomining of gold: a review. J Geochem Explor, 128, 42–50
  • Sheoran V, Sheoran AS, Poonia P. (2009). Phytomining: a review. Miner Eng, 22, 1007–19
  • Sinclair SA, Krämer U. (2012). The zinc homeostasis network of land plants. Biochim Biophys Acta, 1823, 1553–67
  • Sorensen MA, Parker DR, Trumble JT. (2009). Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae). Environ Pollut, 157, 384–91
  • Srivastava M, Ma LQ, Santos JAG. (2006). Three new arsenic hyperaccumulating ferns. Sci Total Environ, 364, 24–31
  • Sun YB, Zhou QX, Diao CY. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technol, 99, 1103–10
  • Sun YB, Zhou QX, An J, et al. (2009b). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106–11
  • Sun YB, Zhou QX, Wang L, Liu W. (2009a). Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater, 161, 808–14
  • Szczygłowska M, Piekarska A, Konieczka P, Namieśnik J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci, 12, 7760–71
  • Tripathi RD, Srivastava S, Mishra S, et al. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol, 25, 158–65
  • Tschan M, Robinson B, Nodari M, Schulin R. (2009). Antimony uptake by different plant species from nutrient solution, agar and soil. Environ Chem, 6, 144–52
  • Usman ARA, Lee SS, Award YM, et al. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87, 872–8
  • Van der Ent A, Baker AJM, Reeves RD, et al. (2013a). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil, 362, 319–34
  • Van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A. (2013b). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor, 128, 72–9
  • Van Nevel L, Mertens J, Oorts K, Verheyen K. (2007). Phytoextraction of metals from soils: how far from practice? Environ Pollut, 150, 34–40
  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N. (2012). Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot, 77, 156–64
  • Vithanage M, Dabrowska BB, Mukherjee AB, et al. (2012). Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett, 10, 217–24
  • Wan Y, Luo S, Chen J, et al. (2012). Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere, 89, 743–50
  • Wang H, Shan X-Q, Wen B, et al. (2004). Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commelina communis. Arch Environ Contam Toxicol, 47, 1–9
  • Wang Y, Yan A, Dai J, et al. (2012). Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator. Environ Monit Assess, 184, 929–37
  • Wei C-Y, Chen T-B. (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere, 63, 1048–53
  • Wei S, Zhou Q, Koval PV. (2006). Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ, 369, 441–6
  • Wei SH, Zhou QX. (2004). Identification of weed species with hyperaccumulative characteristics of heavy metals. Prog Nat Sci, 14, 1259–65
  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O. (2003). Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut, 123, 131–8
  • Wenzel WW, Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ Pollut, 104, 145–55
  • Wilkins DA. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80, 623–33
  • Xiong YH, Yang XE, Ye ZQ, He ZL. (2004). Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health, 39, 2925–40
  • Xue SG, Chen YX, Reeves RD, et al. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut, 131, 393–9
  • Yan X, Zhang M, Liao X, Tu S. (2012). Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere, 88, 240–4
  • Yang X, Long X, Ni W, Fu Ch. (2002). Sedum alfredii: a new Zn hyperaccumulating plant first found in China. Chinese Sci Bull, 47, 1634–7
  • Yanqun Z, Yuan L, Schvartz C, et al. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ Int, 30, 567–76
  • Yoon J, Cao X, Zhou Q, Ma LQ. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ, 368, 456–64
  • Zeng Q-L, Chen R-F, Zhao X-Q, et al. (2011a). Aluminium uptake and accumulation in the hyperaccumulator Camellia oleifera Abel. Pedosphere, 21, 358–64
  • Zeng X-W, Qiu R-L, Ying R-R, et al. (2011b). The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch in response to Zn and Cd. Chemosphere, 82, 321–8
  • Zhang Ch. (2007). Fundamentals of environmental sampling and analysis. Hoboken, NJ: John Wiley & Sons Inc
  • Zhang X, Xia H, Li Z, et al. (2011). Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater, 189, 414–9
  • Zhang X, Xia H, Li Z, et al. (2010). Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technol, 101, 2063–6
  • Zhang XH, Liu J, Huang H-T, et al. (2007). Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 67, 1138–43
  • Zhao FJ, Duham SJ, McGrath SP. (2002). Arsenic hyperaccumulation by different fern species. New Phytol, 156, 27–31
  • Zhou WB, Qiu BS. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci, 169, 737–45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.