1,656
Views
89
CrossRef citations to date
0
Altmetric
Review Article

Biotechnological production and application of fructooligosaccharides

, , , , &
Pages 259-267 | Received 17 Jun 2013, Accepted 01 Jul 2014, Published online: 18 Dec 2014

References

  • Alméciga-Díaz CJ, Gutierrez ÁM, Bahamon I, et al. (2011). Computational analysis of the fructosyltransferase enzymes in plants, fungi and bacteria. Gene, 484, 26–34
  • Al-Sheraji SH, Ismail A, Manap MY, et al. (2013). Prebiotics as functional foods: a review. J Funct Foods, 5, 1542–53
  • Alvarado-Huallanco MB, Maugeri-filho F. (2010). Kinetics and modeling of fructo-oligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp. J Chem Technol Biotechnol, 85, 1654–62
  • Álvaro-Benito M, De Abreu M, Fernández-Arrojo L, et al. (2007). Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol, 132, 75–81
  • Alvídrez-Morales A, González-martínez BE, Jiménez-Salas Z. (2002). Tendencias en la producción de alimentos: alimentos funcionales. Revista Salud Pública y Nutrición. Medigraphic - Literatura Biomédica
  • Antošová M, Polakovič M, Slovinská M, et al. (2002). Effect of sucrose concentration and cultivation time on batch production of fructosyltransferase by Aureobasidium pullulans CCY 27-1-1194. Chem Papers, 56, 394–9
  • Aziani G, Terenzi HF, Jorge JA, Guimarães LHS. (2012). Production of fructooligosaccharides by Aspergillus phoenicis biofilm on polyethylene as inert support. Food Technol Biotechnol, 50, 40–5
  • Balasubramaniem AK, Nagarajan KV, Paramasamy G. (2001). Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem, 36, 1241–7
  • Balken JAM, Dooren TJGM, Tweel WJJ, et al. (1991). Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F-fructosyltransferase. Appl Microbiol Biotechnol, 35, 216–21
  • Barreteau H, Delattre C, Michaud P. (2006). Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol, 44, 323–33
  • Bornet F. (1994). Undigestible sugars in food products. Am J Clin Nutr, 59, 763S–9S
  • Bosscher D. (2009). Fructan prebiotics derived from inulin. In: Charalampopoulos D, Rastall R, eds. Prebiotics and probiotics science and technology. New York: Springer, 163–205
  • Botella C, Diaz A, De Ory I, et al. (2007). Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem, 42, 98–101
  • Chacón-Villalobos A. (2006). Perspectivas agroindustriales actuales de los oligofructosacáridos (FOS). Agronomía Mesoamericana, 17, 265–86
  • Chambert R, Treboul G, Dedonder R. (1974). Kinetic studies of Levansucrase of Bacillus subtilis. Eur J Biochem, 41, 285–300
  • Charalampopoulos D, Rastall RA. (2012). Prebiotics in foods. Curr Opin Biotechnol, 23, 187–91
  • Chen J, Chen X, Xu X, et al. (2011). Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructooligosaccharides (neo-FOSs). Bioresource Technol, 102, 1715–21
  • Chien C-S, Lee W-C, Lin T-J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme Microbial Technol, 29, 252–7
  • Cleveland J, Montville TJ, Nes IF, Chikindas ML. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol, 71, 1–20
  • Crittenden RG, Playne MJ. (1996). Production, properties and applications of food-grade oligosaccharides. Trends Food Sci & Technol, 7, 353–61
  • Csanadi Z, Sisak C. (2008). Production of short chain fructooligosaccharides. Hung, 1, 23–6
  • Cummings JH, Macfarlane GT, Englyst HN. (2001). Prebiotic digestion and fermentation. Am J Clin Nutr, 73, 415s–20s
  • Delzenne NM, Roberfroid MR. (1994). Physiological effects of non-digestible oligosaccharides. LWT – Food Sci Technol, 27, 1–6
  • Dhake AB, Patil MB. (2007). Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Brazil J Microbiol, 38, 194–9
  • Dominguez A, Rodrigues L, Lima N, Teixeira J. (2013). An overview of the recent developments on fructooligosaccharide production and applications. Food Bioprocess Technol, 7, 1–14
  • Dorta C, Cruz R, Oliva-Neto P, Moura D. (2006). Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. J Indus Microbiol Biotechnol, 33, 1003–09
  • Englyst HN, Hudson GJ. (1996). The classification and measurement of dietary carbohydrates. Food Chem, 57, 15–21
  • Farine S, Versluis C, Bonnici P, et al. (2001). Application of high performance anion exchange chromatography to study invertase-catalysed hydrolysis of sucrose and formation of intermediate fructan products. Appl Microbiol Biotechnol, 55, 55–60
  • Fernandes P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res, 2010, 1–19
  • García-Casal MN. (2007). La alimentación del futuro: Nuevas tecnologías y su importancia en la nutrición de la población. Anales Venezolanos de Nutrición, 20, 108–14
  • Ghazi I, De Segura AG, Fernández-Arrojo L, et al. (2005). Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. J Mol Catal B: Enzymatic, 35, 19–27
  • Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, et al. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol, 128, 204–11
  • Gibson G, Rastall R, eds. (2006). Prebiotics: development & application. Chichester: Wiley
  • Gibson GR. (1999). Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr, 129, 1438S–41S
  • Gibson GR, Probert HM, Loo JV, et al. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 17, 259–75
  • Gibson GR, Roberfroid MB. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 125, 1401–12
  • Gibson GR, Scott KP, Rastall RA, et al. (2010). Dietary prebiotics: current status and new definition. Food Sci Technol Bull: Funct Foods, 7, 1–19
  • Graminha EBN, Gonçalves AZL, Pirota RDPB, et al. (2008). Enzyme production by solid-state fermentation: application to animal nutrition. Animal Feed Sci Technol, 144, 1–22
  • Gutiérrez-Alonso P, Fernández-Arrojo L, Plou FJ, Fernández-lobato M. (2009). Biochemical characterization of a β-fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity. FEMS Yeast Res, 9, 768–73
  • Hang YD, Woodams EE, Jang KY. (1995). Enzymatic conversion of sucrose to kestose by fungal extracellular fructosyltransferase. Biotechnol Let, 17, 295–8
  • Hayashi S, Hayashi T, Kinoshita J, et al. (1992). Immobilization of β-fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. J Indus Microbiol Biotechnol, 9, 247–50
  • Hayashi S, Ito K, Nonoguchi M, et al. (1991). Immobilization of a fructosyl-transferring enzyme from Aureobasidium sp. on shirasu porous glass. J Ferment Bioeng, 72, 68–70
  • Hayashi S, Matsuzaki K, Inomata Y, et al. (1993). Properties of Aspergillus japonicus β-fructofuranosidase immobilized on porous silica. World J Microbiol Biotechnol, 9, 216–20
  • Hernalsteens S, Maugeri F. (2008). Purification and characterisation of a fructosyltransferase from Rhodotorula sp. Appl Microbiol Biotechnol, 79, 589–96
  • Hölker U, Höfer M, Lenz J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol, 64, 175–86
  • Jung K, Bang S, Oh T, Park H. (2011). Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol Lett, 33, 1621–4
  • Kaur N, Gupta A. (2002). Applications of inulin and oligofructose in health and nutrition. J Biosci, 27, 703–14
  • Kilian S, Kritzinger S, Rycroft C, et al. (2002). The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol, 18, 637–44
  • Kim M-H, In M-J, Cha HJ, Yoo YJ. (1996). An empirical rate equation for the fructooligosaccharide-producing reaction catalyzed by β-fructofuranosidase. J Ferment Bioeng, 82, 458–63
  • Kurakake M, Ogawa K, Sugie M, et al. (2007). Two types of β-fructofuranosidases from Aspergillus oryzae KB. J Agricult Food Chem, 56, 591–6
  • Lateef A, Gueguim Kana E. (2012). Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Romanian Biotechnol Lett, 17, 7309–16
  • Lateef A, Oloke J, Gueguim kana E, et al. (2008a). Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase. Chem Papers, 62, 635–8
  • Lateef A, Oloke J, Gueguim Kana E, et al. (2008b). Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J Microbiol Biotechnol, 24, 2369–74
  • Lim J, Lee J, Kang S, et al. (2007). Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Technol, 225, 457–62
  • Lin TJ, Lee YC. (2008). High-content fructooligosaccharides production using two immobilized microorganisms in an internal-loop airlift bioreactor. J Chinese Inst Chem Eng, 39, 211–17
  • Linde D, Rodríguez-Colinas B, Estévez M, et al. (2012). Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technol, 109, 123–30
  • Longo MA, Deive FJ, Domínguez A, Sanromán M. (2008). Solid-state fermentation for food and feed application. In: Pandey A, Soccol CR, Larroche C, eds. Current developments in solid-state fermentation. New York: Springer, 379–411
  • Macfarlane GT, Steed H, Macfarlane S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol, 104, 305–44
  • Macfarlane S, Macfarlane GT, Cummings JH. (2006). Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Therapeut, 24, 701–14
  • Madlová A, Antošová M, Baráthová M, et al. (2000). Biotransformation of sucrose to fructooligosaccharides: the choice of microorganisms and optimization of process conditions. In: Stanislaw Bielecki JT, Jacek P, eds. Progress in biotechnology. Zakopane, Poland: Elsevier, 151–155
  • Maiorano A, Piccoli R, Da Silva E, De Andrade Rodrigues M. (2008a). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett, 30, 1867–77
  • Maiorano A, Piccoli R, Silva E, Andrade Rodrigues M. (2008b). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett, 30, 1867–77
  • Mateo C, Palomo JM, Fernandez-Lorente G, et al. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microbial Technol, 40, 1451–63
  • Monsan PF, Ouarné F. (2009). Oligosaccharides derived from sucrose prebiotics and probiotics science and technology. In: Charalampopoulos D, Rastall RA, eds. New York: Springer, 293–336
  • Murphy O. (2001). Non-polyol low-digestible carbohydrates: food applications and functional benefits. Br J Nutr, 85(Suppl 1), S47–53
  • Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA. (2009a). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr Res, 344, 795–800
  • Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA. (2009b). Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J Mol Catal B: Enzymatic, 59, 76–81
  • Mussatto SI, Mancilha IM. (2007). Non-digestible oligosaccharides: a review. Carbohydr Polym, 68, 587–97
  • Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA. (2012). Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol, 235, 13–22
  • Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG. (2009). Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresource Technol, 100, 2040–5
  • Nomenclature I-IJCOB. (1982). Abbreviated terminology of oligosaccharide chains. J Biol Chem, 257, 433–437
  • Olvera C, Castillo E, López-munguía A. (2007a). Fructosiltransferasas, fructanas y fructosa. Biotecnología, 327–345
  • Olvera C, Centeno-leija S, López-munguía A. (2007b). Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Antonie Van Leeuwenhoek, 92, 11–20
  • Park M, Lim J, Kim J, et al. (2005). Continuous production of neo-fructooligosaccharides by immobilization of whole cells of Penicillium citrinum. Biotechnol Lett, 27, 127–30
  • Park YK, Almeida MM. (1991). Production of fructooligosaccharides from sucrose by a transfructosylase from Aspergillus niger. World J Microbiol Biotechnol, 7, 331–4
  • Pérez Conesa D, López Martínez G, Ros Berruezo G. (2004). Principales prebióticos y sus efectos en la alimentación humana. Murcia: Universidad de Murcia, Servicio de Publicaciones ed. Anales de veterinaria Murcia
  • Pineiro M, Asp NG, Reid G, et al. (2008). FAO Technical meeting on prebiotics. J Clin Gastroenterol, 42(suppl 3 Pt 2):S156–9
  • Plou Gasca FJ, Alcalde Galeote M, Ghazi I, et al. (2009). Efficient fructooligosaccharide synthesis with a fructosyltransferase from Aspergillus aculeatus. In: Fessner W-D, Anthonsen T, eds. Modern biocatalysis: stereoselective and environmentally friendly reactions. Wiley-VCH: John Wiley & Sons, 153–171
  • Prata M, Mussatto S, Rodrigues L, Teixeira J. (2010). Fructooligosaccharide production by Penicillium expansum. Biotechnol Lett, 32, 837–40
  • Rastall RA, Maitin V. (2002). Prebiotics and synbiotics: towards the next generation. Curr Opin Biotechnol, 13, 490–6
  • Reyed M. (2007). The role of bifidobacteria in health. Res J Med & Med Sci, 2, 14–24
  • Rivero-Urgell M, Santamaria-Orleans A. (2001). Oligosaccharides: application in infant food. Early Human Dev, 65(supplement 2), S43–52
  • Roberfroid M, Slavin J. (2000). Nondigestible oligosaccharides. Crit Rev Food Sci Nutr, 40, 461–80
  • Roberfroid MB. (1993). Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr, 33, 103–48
  • Roberfroid MB. (2007a). Prebiotics: the concept revisited. J Nutr, 137, 830S–7S
  • Roberfroid MB. (2007b). Inulin-type fructans: functional food ingredients. J Nutr, 137, 2493S–502S
  • Roberfroid MB. (2002). Functional foods: concepts and application to inulin and oligofructose. Br J Nutr, 87, S139–43
  • Roberfroid MB, Delzenne NM. (1998). Dietary fructans. Ann Rev Nutr, 18, 117–43
  • Roberfroid MB, Van Loo JAE, Gibson GR. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 128, 11–19
  • Rodríguez Couto S, Sanromán MA. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J, 22, 211–19
  • Rustiguel CB, Oliveira AHCD, Terenzi HCF, et al. (2011). Biochemical properties of an extracellular 2-D-fructofuranosidase II produced by Aspergillus phoenicis under solid-sate fermentation using soy bran as substrate. Electr J Biotechnol, 14, 1–10
  • Sabater-Molina M, Larqué E, Torrella F, Zamora S. (2009). Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem, 65, 315–28
  • Sánchez O, Guio F, Garcia D, et al. (2008). Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioproducts Proces, 86, 109–15
  • Sánchez O, Rodriguez A, Silva E, Caicedo L. (2010). Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells. Food Bioprocess Technol, 3, 662–73
  • Sangeetha PT, Ramesh MN, Prapulla SG. (2004). Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol, 65, 530–7
  • Sangeetha PT, Ramesh MN, Prapulla SG. (2005). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem, 40, 1085–8
  • Sarbini SR, Rastall RA. (2011). Prebiotics: metabolism, structure, and function. Funct Food Rev, 3, 93–106
  • Sarmiento Rubiano LA. (2006). Alimentos funcionales, una nueva alternativa de alimentación. Orinoquia, 10, 16–23
  • Scheid MMA, Moreno YMF, Maróstica Junior MR, Pastore GM. (2013). Effect of prebiotics on the health of the elderly. Food Res Int, 53, 426–32
  • Sheldon RA. (2007). Enzyme immobilization: the quest for optimum performance. Adv Synth Catal, 349, 1289–307
  • Sheu D, Chang J, Wang C, et al. (2013). Continuous production of high-purity fructooligosaccharides and ethanol by immobilized Aspergillus japonicus and Pichia heimii. Bioprocess Biosyst Eng, 36, 1745–1751
  • Silveira Rodríguez MB, Monereo Megías S, Molina Baena B. (2003). Alimentos funcionales y nutrición óptima: ¿Cerca o lejos? Revista Española de Salud Pública, 77, 317–31
  • Slavin J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5, 1417–35
  • Tanriseven A, Aslan Y. (2005). Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme Microbial Technol, 36, 550–4
  • Tomotani EJ, Vitolo M. (2007). Production of high-fructose syrup using immobilized invertase in a membrane reactor. J Food Eng, 80, 662–7
  • Vega R, Zuniga-Hansen ME. (2014). A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem Eng J, 82, 158–65
  • Venter CS. (2007). Prebiotics: an update. J Fam Ecol Consum Sci, 35, 17–25
  • Wallis GLF, Hemming FW, Peberdy JF. (1997). Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Arch Biochem Biophys, 345, 214–22
  • Walton G, Swann J, Gibson G. (2013). Prebiotics. In: Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F, eds. The prokaryotes. Berlin Heidelberg: Springer, 25–43
  • Wang L-M, Zhou H-M. (2006). Isolation and identification of a novel Aspergillus japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. J Food Biochem, 30, 641–58
  • Watzl B, Girrbach S, Roller M. (2005). Inulin, oligofructose and immunomodulation. Br J Nutr, 93, S49–55
  • Yoshikawa J, Amachi S, Shinoyama H, Fujii T. (2008). Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnol Lett, 30, 535–9
  • Yun J, Jung K, Oh J, Lee J. (1990). Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol, 24-25, 299–308
  • Yun J, Song S. (1996). Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol Bioprocess Eng, 1, 18–21
  • Yun JW. (1996). Fructooligosaccharides--occurrence, preparation, and application. Enzyme Microb Technol, 19, 107–17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.