706
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Penicillin acylases revisited: importance beyond their industrial utility

, , &
Pages 303-316 | Received 28 Mar 2014, Accepted 29 Jul 2014, Published online: 28 Nov 2014

References

  • Ambedkar SS, Deshpande BS, Sudhakaran VK, Shewale JG. (1991). Beijerinckia indica var penicillanicum penicillin V acylase – enhanced enzyme production by catabolite repression-resistant mutant and effect of solvents on enzyme-activity. J Ind Microbiol, 7, 209–14
  • Arroyo M, de la Mata I, Acebal C, Castillon MP. (2003). Biotechnological applications of penicillin acylases, state-of-the-art. Appl Microbiol Biotechnol, 60, 507–14
  • Avinash VS, Panigrahi P, Suresh CG, et al. (2013). Structural modelling of substrate binding and inhibition in penicillin V acylase from Pectobacterium atrosepticum. Biochem Biophys Res Comm, 437, 538–43
  • Babic F, Venturi V, Maravic-Vlahovicek G. (2010). Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate. BMC Infect Dis, 10, 148–59
  • Bateup JM, McConelle MA, Jenkinson SF et al. (1995). Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host. Appl Environ Microbiol, 61, 1147–9
  • Begley M, Hill C, Gahan CGM. (2006). Bile salt hydrolase activity in probiotics. Appl Environ Microbiol, 72, 1729–38
  • Begley M, Sleator RD, Gahan CGM, Hill C. (2005). Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun, 73, 894–904
  • Bokhove M, Jimenez PN, Quax WJ, Dijkstra BW. (2010). The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Nat Acad Sci, 107, 686–91
  • Brannigan JA, Dodson G, Duggleby HJ, et al. (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 378, 416–19
  • Cai G, Zhu SC, Yang S, et al. (2004). Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans, probing the molecular basis for its high thermostability. Appl Environ Microbiol, 70, 2764–70
  • Cardillo G, Tolomelli A, Tomasini C. (1996). Enzymatic resolution of alpha-alkyl beta-amino acids using immobilized penicillin G acylase. J Org Chem, 61, 8651–4
  • Carlsen F, Emborg C. (1981). Bacillus sphaericus V-penicillin acylase. I. fermentation. Biotechnol Lett, 3, 375–8
  • Chandel AK, Rao LV, Narasu ML, Singh OV. (2008). The realm of penicillin G acylase in beta-lactam antibiotics. Enzyme Microb Technol, 42, 199–207
  • Chandra PM, Brannigan JA, Prabhune A, et al. (2005). Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants. Acta Crystallogr F, 61, 124–7
  • Chauhan S, Iyengar MRS, Chattoo BB. (1998). Factors influencing the production of penicillin V acylase by Chainia, a sclerotial Streptomyces. J Basic Microbiol, 38, 173–9
  • Cole M. (1969). Deacylation of acylamino compounds other than penicillins by cell-bound penicillin acylase of Escherichia coli. Biochem J, 115, 741–5
  • Cole M, Sutherland R. (1966). Role of penicillin acylase in resistance of gram-negative bacteria to penicillins. J Gen Microbiol, 42, 345–56
  • Davies J. (2006). Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol, 33, 496–9
  • de Souza VR, Silva ACG, Pinotti LM, et al. (2005). Characterization of the penicillin G acylase from Bacillus megaterium ATCC 14945. Braz Arch Biol Technol, 48, 105–11
  • Delpino MV, Marchesini MI, Estein SM, et al. (2007). A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect Immun, 75, 299–305
  • Deshpande BS, Ambedkar SS, Shewale JG. (1996). Cephalosporin C acylase and penicillin V acylase formation by Aeromonas sp ACY 95. World J Microbiol Biotechnol, 12, 373–8
  • Deshpande BS, Ambedkar SS, Sudhakaran VK, Shewale JG. (1994). Molecular biology of beta-lactam acylases. World J Microbiol Biotechnol, 10, 129–38
  • Dong YH, Wang LH, Xu JL, et al. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–17
  • Duggleby HJ, Tolley SP, Hill CP, et al. (1995). Penicillin acylase has a single-amino-acid catalytic center. Nature, 373, 264–8
  • Dussurget O, Cabanes D, Dehoux P, et al. (2002). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol, 45, 1095–106
  • Elkins CA, Moser SA, Savage DC. (2001). Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology, 147, 3403–12
  • Erickson RC, Bennett RE. (1965). Penicillin acylase activity of Penicillium chrysogenum. Appl Microbiol, 13, 738–42
  • Fang F, Li Y, Bumann M, et al. (2009). Allelic Variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol, 191, 5743–57
  • Fuqua C, Parsek MR, Greenberg EP. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Ann Rev Genet, 35, 439–68
  • Gabor EM, de Vries EJ, Janssen DB. (2005). A novel penicillin acylase from the environmental gene pool with improved synthetic properties. Enzyme Microb Technol, 36, 182–90
  • Galan B, Garcia JL, Prieto MA. (2004). The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. J Bacteriol, 186, 2215–20
  • Grulich M, Stepanek V, Kyslik P. (2013). Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol Adv, 31, 1458–72
  • Guncheva M, Ivanov I, Galunsky B, et al. (2004). Kinetic studies and molecular modelling attribute a crucial role in the specificity and stereoselectivity of penicillin acylase to the pair ArgA145-ArgB263. Eur J Biochem, 271, 2272–9
  • Hamner S, McInnerney K, Williamson K, et al. (2013). Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS One, 8, e74647. doi: 10.1371/journal.pone.0074647
  • Hoffman LR, D'Argenio DA, MacCoss MJ, et al. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436, 1171–5
  • Huang JJ, Petersen A, Whiteley M, Leadbetter JR. (2006). Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol, 72, 1190–7
  • Ignatova Z, Hornle C, Nurk A, Kasche V. (2002). Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Comm, 291, 146–9
  • Ignatova Z, Wischnewski F, Notbohm H, Kasche V. (2005). Pro-sequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli. J Mol Biol, 348, 999–1014
  • Inokoshi J, Takeshima H, Ikeda H, Omura S. (1992). Cloning and sequencing of the aculeacin-A acylase-encoding gene from Actinoplanes utahensis and expression in Streptomyces lividans. Gene, 119, 29–35
  • Ismail H, Lau RM, van Langen LM, et al. (2008). A green, fully enzymatic procedure for amine resolution, using a lipase and a penicillin G acylase. Green Chem, 10, 415–18
  • Jimenez PN, Koch G, Papaioannou E, et al. (2010). Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology, 156, 49–59
  • Karlin S. (1998). Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol, 1, 598–610
  • Kasche V, Galunsky B, Ignatova Z. (2003). Fragments of pro-peptide activate mature penicillin amidase of Alcaligenes faecalis. Eur J Biochem, 270, 4721–8
  • Kasche V, Ignatova Z, Markl H, et al. (2005). Ca2+ is a cofactor required for membrane transport and maturation and is a yield-determining factor in high cell density penicillin amidase production. Biotechnol Prog, 21, 432–8
  • Kim DW, Kang SM, Yoon KH. (2001). Characterization of glutaryl 7-ACA acylase from Pseudomonas diminuta KAC-1. J Microbiol Biotechnol, 11, 452–7
  • Kim D, Lee JS, Kim J, et al. (2007). Biosynthesis of bile acids in a variety of marine bacterial taxa. J Microbiol Biotechnol, 17, 403–7
  • Kim GB, Miyamoto CM, Meighen EA, Lee BH. (2004a). Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl Environ Microbiol, 70, 5603–12
  • Kim HS, Kang TS, Hyun JS, Kang HS. (2004b). Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex. J Biol Chem, 279, 33253–62
  • Klaver FAM, Van der Meer R. (1993). The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol, 59, 1120–4
  • Klei HE, Daumy GO, Kelly JA. (1995). Purification and preliminary crystallographic studies of penicillin G acylase from Providencia rettgeri. Prot Sci, 4, 433–41
  • Koch G, Jimenez PN, Muntendam R, et al. (2010). The acylase PvdQ has a conserved function among fluorescent Pseudomonas spp. Environ Microbiol Rep, 2, 433–9
  • Konstantinovic M, Marjanovic N, Ljubijankic G, Glisin V. (1994). The penicillin amidase of Arthrobacter viscosus (ATCC 15294). Gene, 143, 79–83
  • Koreishi M, Zhang DM, Imanaka H, et al. (2006). A novel acylase from Streptomyces mobaraensis that efficiently catalyzes hydrolysis/synthesis of capsaicins as well as N-Acyl-L-amino acids and N-acyl-peptides. J Agri Food Chem, 54, 72–8
  • Kovacikova G, Lin W, Skorupski K. (2003). The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J Bacteriol, 185, 4825–36
  • Krzeslak J, Wahjudi M, Quax WJ. (2007). Quorum quenching acylases in Pseudomonas aeruginosa. In: Ramos JL, Filloux A, eds. Pseudomonads, Volume 5: a model system in biology. Berlin: Springer Science and Business Media, 429–49
  • Kumar A, Prabhune A, Suresh CG, Pundle A. (2008). Characterization of smallest active monomeric penicillin V acylase from new source: a yeast, Rhodotorula aurantiaca (NCIM 3425). Process Biochem, 43, 961–7
  • Kumar RS, Brannigan JA, Prabhune AA, et al. (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem, 281, 32516–25
  • Lambert JM, Bongers RS, de Vos WM, Kleerebezem M. (2008a). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl Environ Microbiol, 74, 4719–26
  • Lambert JM, Siezen RJ, de Vos WM, Kleerebezem M. (2008b). Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology, 154, 2492–500
  • Leadbetter JR, Greenberg EP. (2000). Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol, 182, 6921–6
  • Lin YH, Xu JL, Hu JY, et al. (2003). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol, 47, 849–60
  • Lodola A, Branduardi D, De Vivo M, et al. (2012). A catalytic mechanism for cysteine N-terminal nucleophile hydrolases, as revealed by free energy simulations. PLoS One, 7, e32397. doi: 10.1371/journal.pone.0032397
  • Lowe DA, Romancik G, Elander RP. (1986). Enzymatic hydrolysis of penicillin V to 6-aminopenicillanic acid by Fusarium oxysporum. Biotechnol Lett, 8, 151–6
  • Marchesini MI, Connolly J, Victoria Delpino M, et al. (2011). Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization. PLoS One, 6, e28480. doi:10.1371/journal.pone.0028480
  • Margolin AL, Svedas VK, Berezin IV. (1980). Substrate specificity of penicillin amidase from Escherichia coli. Biochim Biophys Acta, 616, 283–9
  • Matsuda A, Matsuyama K, Yamamoto K, et al. (1987). Cloning and characterization of the genes for 2 distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol, 169, 5815–20
  • McDonough MA, Klei HE, Kelly JA. (1999). Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri. Prot Sci, 8, 1971–81
  • McVey CE, Walsh MA, Dodson GG, et al. (2001). Crystal structures of penicillin acylase enzyme-substrate complexes, structural insights into the catalytic mechanism. J Mol Biol, 313, 139–50
  • Merino E, Balbas P, Recillas F, et al. (1992). Carbon regulation and the role in nature of the Escherichia coli penicillin acylase (pac) gene. Mol Microbiol, 6, 2175–82
  • Miller MB, Bassler BL. (2001). Quorum sensing in bacteria. Ann Rev Microbiol, 55, 165–99
  • Mukherji R, Varshney NK, Panigrahi P, et al. (2014). A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzyme Microb Technol, 56, 1–7
  • Nagao K, Yamashita M, Ueda M. (2004). Production of autoproteolytically subunit-assembled 7-beta-(4-carboxybutanamido) cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 using a chitin-binding domain. Appl Microbiol Biotechnol, 65, 407–13
  • Nair PP, Gordon M, Reback J. (1967). Enzymatic cleavage of carbon-nitrogen bond in 3alpha 7alpha 12alpha-trihydroxy-5beta-cholan-24-oyl glycine. J Biol Chem, 242, 7–11
  • Ohashi H, Katsuta Y, Hashizume T, et al. (1988). Molecular cloning of the penicillin G acylase gene from Arthrobacter viscosus. Appl Environ Microbiol, 54, 2603–7
  • Ohashi H, Katsuta Y, Nagashima M, et al. (1989). Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol, 55, 1351–6
  • Oinonen C, Rouvinen J. (2000). Structural comparison of Ntn-hydrolases. Prot Sci, 9, 2329–37
  • Olsson A, Hagstrom T, Nilsson B, et al. (1985). Molecular cloning of Bacillus sphaericus penicillin V amidase gene and its expression in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol, 49, 1084–9
  • Park SY, Kang HO, Jang HS, et al. (2005). Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp and its application to quorum quenching. Appl Environ Microbiol, 71, 2632–41
  • Parmar A, Kumar H, Marwaha S, Kennedy JF. (2000). Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv, 18, 289–301
  • Prieto MA, Diaz E, Garcia JL. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol, 178, 111–20
  • Pundle A, SivaRaman H. (1997). Bacillus sphaericus penicillin V acylase: purification, substrate specificity, and active-site characterization. Curr Microbiol, 34, 144–8
  • Rajendhran J, Gunasekaran P. (2004). Recent biotechnological interventions for developing improved penicillin G acylases. J Biosci Bioeng, 97, 1–13
  • Rajendhran J, Gunasekaran P. (2007). Molecular cloning and characterization of thermostable beta-lactam acylase with broad substrate specificity from Bacillus badius. J Biosci Bioeng, 103, 457–63
  • Rathinaswamy P, Pundle AV, Prabhune AA, et al. (2005). Cloning, purification, crystallization and preliminary structural studies of penicillin V acylase from Bacillus subtilis. Acta Crysta F, 61, 680–3
  • Rathinaswamy P, Gaikwad SM, Suresh CG, et al. (2012). Purification and characterization of YxeI, a penicillin acylase from Bacillus subtilis. Int J Biol Macromol, 50, 25–30
  • Ren J, Sun K, Wu Z, et al. (2011). All 4 Bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III. J Food Sci, 76, 622–8
  • Roa A, Garcia JL, Salto F, Cortes E. (1994). Changing the substrate specificity of penicillin G acylase from Kluyvera citrophila through selective pressure. Biochem J, 303, 869–75
  • Rolinson GN. (1988). The influence of 6-aminopenicillanic acid on antibiotic development. J Antimicrob Chemother, 22, 5–14
  • Rossocha M, Schultz-Heienbrok R, von Moeller H, et al. (2005). Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry, 44, 5739–48
  • Schumacher G, Sizmann D, Haug H, et al. (1986). Penicillin acylase from Escherichia coli – unique gene protein relation. Nucleic Acids Res, 14, 5713–27
  • Senthilvel SG, Pai JS. (1996). Purification of penicillin acylase of Bacillus megaterium. Biotechnol Tech, 10, 611–14
  • Sevo M, Degrassi G, Skoko N, et al. (2002). Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res, 1, 271–7
  • Shewale JG, Sivaraman H. (1989). Penicillin acylase – enzyme production and its application in the manufacture of 6-APA. Process Biochem, 24, 146–54
  • Shewale JG, Sudhakaran VK. (1997). Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enzyme Microb Technol, 20, 402–10
  • Sio CF, Otten LG, Cool RH, et al. (2006). Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun, 74, 1673–82
  • Sio CF, Riemens AM, van der Laan JM, et al. (2002). Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem, 269, 4495–504
  • Sio CF, Quax WJ. (2004). Improved beta-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol, 15, 349–55
  • Skrob F, Becka S, Plhackova K, et al. (2003). Novel penicillin G acylase from Achromobacter sp CCM 4824. Enzyme Microb Technol, 32, 738–44
  • Sridevi N, Srivastava S, Khan BM, Prabhune AA. (2009). Characterization of the smallest dimeric bile salt hydrolase from a thermophile Brevibacillus sp. Extremophiles 13, 363–70
  • Stoppok E, Wagner F, Zadrazil F. (1981). Identification of a penicillin V acylase processing fungus. Eur J Appl Microbiol Biotechnol, 13, 60–1
  • Sudhakaran VK, Deshpande BS, Ambedkar SS, Shewale JG. (1992). Molecular aspects of penicillin and cephalosporin acylases. Process Biochem, 27, 131–43
  • Sudhakaran VK, Shewale JG. (1995). Purification and characterization of extracellular penicillin V acylase from Fusarium sp. SKF 235. Hind Antibiot Bull, 37, 9–15
  • Suresh CG, Pundle AV, SivaRaman H, et al. (1999). Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol, 6, 414–16
  • Svedas V, Guranda D, vanLangen L, et al. (1997). Kinetic study of penicillin acylase from Alcaligenes faecalis. FEBS Lett, 417, 414–18
  • Tanaka H, Hashiba H, Kok J, Mierau I. (2000). Bile salt hydrolase of Bifidobacterium longum – biochemical and genetic characterization. Appl Environ Microbiol, 66, 2502–12
  • Taranto MP, Sesma F, de Ruiz Holgado AP et al. (1997). Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnol Lett, 19, 845–7
  • Torres LL, Cantero A, del Valle M, et al. (2013). Engineering the substrate specificity of a thermophilic penicillin acylase from Thermus thermophilus. Appl Environ Microbiol, 79, 1555–62
  • Torres LL, Ferreras ER, Cantero A, et al. (2012). Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Micro Cell Fact, 11, 105. doi:10.1186/1475-2859-11-105
  • Torres-Bacete J, Hormigo D, Stuart M, et al. (2007). Newly discovered penicillin acylase activity of Aculeacin A acylase from Actinoplanes utahensis. Appl Environ Microbiol, 73, 5378–81
  • Torres-Guzman R, de la Mata I, Torres-Bacete J, et al. (2002). Substrate specificity of penicillin acylase from Streptomyces lavendulae. Biochem Biophys Res Commun, 291, 593–7
  • Uroz S, Chhabra SR, Camara M, et al. (2005). N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology, 151, 3313–22
  • Valle F, Balbas P, Merino E, Bolivar F. (1991). The role of penicillin amidases in nature and in industry. Trends Biochem Sci, 16, 36–40
  • Valle F, Gosset G, Tenorio B, et al. (1986). Characterization of the regulatory region of the Escherichia coli penicillin acylase structural gene. Gene, 50, 119–22
  • van Langen LM, Oosthoek NHP, Guranda DT, et al. (2000). Penicillin acylase-catalyzed resolution of amines in aqueous organic solvents. Tetrahedron Asymmetry, 11, 4593–600
  • Vandamme EJ, Voets JP. (1973). Some aspects of penicillin V acylase produced by Rhodotorula glutinis var glutinis. J Basic Microbiol, 13, 701–10
  • Vandamme EJ, Voets JP. (1974). Microbial penicillin acylases. Adv Appl Microbiol, 17, 311–69
  • Vandamme EJ, Voets JP. (1975). Properties of purified penicillin v-acylase of Erwinia aroideae. Experientia, 31, 140–3
  • Varshney NK, Kumar RS, Ignatova Z, et al. (2012). Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis. Acta Cryst F, 68, 273–7
  • Varshney NK, Ramasamy S, Brannigan JA, et al. (2013). Cloning, overexpression, crystallization and preliminary X-ray crystallographic analysis of a slow-processing mutant of penicillin G acylase from Kluyvera citrophila. Acta Crystallogr F, 69, 925–9
  • Verhaert RMD, Riemens AM, vanderLaan JM, et al. (1997). Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Appl Environ Microbiol, 63, 3412–18
  • Wahjudi M, Papaioannou E, Hendrawati O, et al. (2011). PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology, 157, 2042–55
  • Yang Y, Biedendieck R, Wang W, et al. (2006). High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Micro Cell Fact, 5, 36. doi: 10.1186/1475-2859-5-36
  • Zhang D, Koreishi M, Imanaka H, et al. (2007). Cloning and characterization of penicillin V acylase from Streptomyces mobaraensis. J Biotechnol, 128, 788–800
  • Zhiryakova D, Ivanov I, Ilieva S, et al. (2009). Do N-terminal nucleophile hydrolases indeed have a single amino acid catalytic center? FEBS J, 276, 2589–98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.