4,000
Views
156
CrossRef citations to date
0
Altmetric
Review Article

Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review

, &
Pages 317-326 | Received 09 Apr 2014, Accepted 24 Jul 2014, Published online: 29 Sep 2014

References

  • Abe Y, Shimada H, Kitada S. (2008). Raft-targeting and oligomerization of parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. J Biochem-Tokio, 143, 269–75
  • Akiba T, Abe Y, Kitada S, et al. (2009). Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J Mol Biol, 386, 121–33
  • Baxter SW, Badenes-Pérez FR, Morrison A, et al. (2011). Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189, 675–9
  • Baxter SW, Zhao JZ, Gahan LJ, et al. (2005). Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella. Insect Mol Biol, 14, 327–34
  • Beegle CC, Yamamoto T. (1992). History of Bacillus thuringiensis Berliner research and development. Can Entomol, 124, 587–616
  • Bhattacharya D, Nagpure A, Gupta RK. (2007). Bacterial chitinases: properties and potential. Crit Rev Biotechnol, 27, 21–8
  • Bonin A, Paris M, Tetreau G, et al. (2009). Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations. BMC Genomics, 10, 551
  • Boyer S, Paris M, Jego S, et al. (2012). Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control, 62, 75–81
  • Brar SK, Verma M, Tyagi RD, et al. (2008). Bacillus thuringiensis fermentation of wastewater and wastewater sludge–presence and characterization of chitinases. Environ Technol, 29, 161–70
  • Bravo A, Gill SS, Soberón M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–35
  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol, 41, 423–31
  • Carrière Y, Dutilleul P, Ellers-Kirk C, et al. (2004). Sources, sinks, and the zone of influence of refuges for managing insect resistance to Bt crops. Ecol Appl, 14, 1615–23
  • Carrière Y, Ellers-Kirk C, Hartfield K, et al. (2012). Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance. Proc Natl Acad Sci USA Biol, 109, 775–80
  • Chaiharn M, Lumyong S, Hasan N, Plikomol A. (2013). Solid-state cultivation of Bacillus thuringiensis R 176 with shrimp shells and rice straw as a substrate for chitinase production. Ann Microbiol, 63, 443–50
  • Chen J, Aimanova K, Fernandez L, et al. (2009). Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem J, 424, 191–200
  • Cooper MA, Carroll J, Travis ER, et al. (1998). Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochem J, 333, 677–83
  • Côté J.C. (2007). How early discoveries about Bacillus thuringiensis prejudiced subsequent research and use. In: Vincent C, Goettel MS, Lazarovits G, eds. Biological control. Wallingford: CAB International
  • Dahiya N, Tewari R, Hoondal GS. (2006). Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol, 71, 773–82
  • Dash HR, Mangwani N, Das S. (2014). Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res Int, 21, 2642--53
  • Dorsch JA, Candas M, Griko NB, et al. (2002). Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of Bt-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem Mol Biol, 32, 1025–36
  • El-Hag H, Safhi M. (2011). Antimalignancy activity of Bacillus thuringiensis Serovar Dakota (H15) in vivo. World J Med Sci, 6, 6–16
  • Ernandes S, Bianchi VLD, Moraes IDO. (2012). Evaluation of two different culture media for the development of biopesticides based on Bacillus thuringiensis and their application in larvae of Aedes aegypti Acta Sci Technol, 35, 11–18
  • Fabrick J, Oppert C, Lorenzen MD, et al. (2009). A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J Biol Chem, 284, 18401–10
  • Farinós GP, De La Poza M, Hernández-Crespo P, et al. (2004). Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol Exp Appl, 110, 23–30
  • Gahan LJ, Pauchet Y, Vogel H, Heckel DG. (2010). An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet, 6, e1001248
  • Georghiou GP, Wirth MC. (1997). Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol, 63, 1095–101
  • Goldman IF, Arnold J, Carlton BC. (1986). Selection for resistance to Bacillus thuringiensis subsp. israelensis in field and in laboratory population of the mosquitos Aedes aegypti. J Invertebr Pathol, 47, 317--24
  • Gómez I, Sánchez J, Miranda R, et al. (2002). Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett, 513, 242–6
  • Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, et al. (2012). Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species. Appl Environ Microbiol, 78, 4048–50
  • Hua G, Jurat-Fuentes JL, Adang MJ. (2004). Fluorescent-based assays establish Manduca sexta Bt-R1a cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochem Mol Biol, 34, 193–202
  • Ishiwata S. (1902). Su le bacilli appellé, “sitto”. Bull Assoc Sericulture Jpn, 114, 1–5
  • Jiménez-Juárez N, Muñoz-Garay C, Gómez I, et al. (2008). The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta. Peptides, 29, 318–23
  • Jurat-Fuentes JL, Adang MJ. (2006). The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Biochemistry, 45, 9688–95
  • Katayama H, Yokota H, Akao T, et al. (2005). Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis. J Biochem Tokyo, 137, 17–25
  • Kitada S, Abe Y, Shimada H, et al. (2006). Cytocidal actions of parasporin-2, an anti-tumor crystal toxin from Bacillus thuringiensis. J Biol Chem, 281, 26350–60
  • Kranthi KR, Dhawad CS, Naidu SR, et al. (2006). Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to Cry1Ac toxin of Bacillus thuringiensis. Crop Prot, 25, 119–24
  • Kroeger I, Duquesne S, Liess M. (2013). Crustacean biodiversity as an important factor for mosquito larval control. J Vector Ecol, 38, 390–400
  • Kruger M, Rensburg JV, Berg JVD. (2011). Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ Entomol, 40, 477–83
  • Lebel G, Vachon V, Préfontaine G, et al. (2009). Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Appl Environ Microbiol, 75, 3842–50
  • Lenormand T, Raymond M. (1998). Resistance management: the stable zone strategy. Proc Biol Sci, 265, 1985–90
  • Liu M, Cai QX, Liu HZ, et al. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol, 93, 374–9
  • Mahon RJ, Olsen KM, Garsia KA, Young SR. (2007). Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J Econ Entomol, 100, 894–902
  • Margalit J, Dean D. (1985). The story of Bacillus thuringiensis var. israelensis (Bti). J Am Mosq Control Assoc, 1, 1–7
  • Melo ALA, Sanchuki CE, Woiciechowsk AL, et al. (2012). Utilização da cama de frango em meio de cultivo de Bacillus thuringiensis var. israelensis Berliner para o controle de Aedes aegypti Linnaeus. J Biotechnol Biodivers, 2, 1–6
  • Milner RJ. (1994). History of Bacillus thuringiensis. Agric Ecosyst Environ, 49, 9–13
  • Mizuki E, Ohba M, Akao T, et al. (1999). Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J Appl Microbiol, 86, 477–86
  • Morin S, Biggs RW, Sisterson MS, et al. (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA, 100, 5004–9
  • Nagamatsu Y, Okamura S, Saitou H, et al. (2010). Three Cry toxins in two types from Bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells. Biosci Biotech Bioch, 74, 494–8
  • Ohba M, Mizuki E, Uemori A. (2009). Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res, 29, 427–33
  • Ohba M, Yu M, Aizawa K. (1988). Occurrence of noninsecticidal Bacillus thuringiensis flagellar serotype 14 in the soil of Japan. Syst Appl Microbiol, 11, 85–9
  • Okumura S, Ishikawa T, Saitoh H, et al. (2013). Identification of a second cytotoxic protein produced by Bacillus thuringiensis A1470. Biotechnol Lett, 35, 1889–94
  • Okumura S, Saitoh H, Ishikawa T, et al. (2011). Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. BBA Rev Biomembr, 1808, 1476–82
  • Pardo-López L, Muñoz-Garay C, Porta H, et al. (2009). Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides, 30, 589–95
  • Paris M, Melodelima C, Coissac E, et al. (2012). Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. J Invertebr Pathol, 109, 201–8
  • Patil CD, Borase HP, Salunke BK, Patil SV. (2013a). Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitol Res, 112, 3283–8
  • Patil SR, Amena S, Vikas A, et al. (2013b). Utilization of silkworm litter and pupal waste-an eco-friendly approach for mass production of Bacillus thuringiensis. Bioresource Technol, 131, 545–7
  • Pérez C, Muñoz-Garay C, Portugal LC, et al. (2007). Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol, 9, 2931–7
  • Perez CJ, Shelton AM. (1997). Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J Econ Entomol, 90, 87–93
  • Poornima K, Selvanayagam P, Shenbagarathai R. (2010). Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cells. J Appl Microbiol, 109, 348–54
  • Ramırez-Suero M, Valerio-Alfaro G, Bernal JS, Ramírez-Lepe M. (2011). Synergistic effect of chitinases and Bacillus thuringiensis israelensis spore-toxin complex against Aedes aegypti larvae. Can Entomol, 143, 157–64
  • Rausell C, García-Robles I, Sánchez J, et al. (2004). Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Biochim Biophys Acta, 1660, 99–105
  • Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, et al. (2004). Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci, 69, 131–4
  • Roh JY, Choi JY, Li MS, et al. (2007). Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol, 17, 547–59
  • Sampson MN, Gooday GW. (1998). Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology, 144, 2189–94
  • Sanchis V. (2012) Genetic improvement of Bt strains and development of novel biopesticides. Bacillus thuringiensis biotechnology. Netherlands: Springer
  • Schwartz JL, Laprade R. (2000). Membrane permeabilisation by Bacillus thuringiensis toxins: protein insertion and pore formation. In: Charles JF, Delécluse A, Nielsen-LeRoux C, eds. Entomopathogenic bacteria: from laboratory to field application. Norwell, MA: Kluwer Associate Publishing
  • Schwartz JL, Lu YJ, Söhnlein P, et al. (1997). Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett, 412, 270–6
  • Soberón M, Pardo L, Muñóz-Garay C, et al. (2010). Pore formation by Cry toxins. In: Anderluh G, Lakey JH, eds. Proteins: membrane binding and pore formation. New York: Springer
  • Stalinski R, Tetreau G, Gaude T, Després L. (2014). Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. J Invertebr Pathol, 119, 50--53
  • Tabashnik BE. (1994). Evolution of resistance to Bacillus thuringiensis. Ann Rev Entomol, 39, 47–79
  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y. (2008). Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol, 26, 199–202
  • Tabashnik BE, Unnithan GC, Masson L, et al. (2009). Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc Natl Acad Sci USA Biol, 106, 11889–94
  • Tan F, Zheng A, Zhu J, et al. (2010). Rapid cloning, identification, and application of one novel crystal protein gene cry30Fa1 from Bacillus thuringiensis. FEMS Microbiol Lett, 302, 46–51
  • Tan SY, Cayabyab BF, Alcantara EP, et al. (2013). Comparative binding of Cry1Ab and Cry1F Bacillus thuringiensis toxins to brush border membrane proteins from Ostrinia nubilalis, Ostrinia furnacalis and Diatraea saccharalis (Lepidoptera: Crambidae) midgut tissue. J Invertebr Pathol, 114, 234–40
  • Tetreau G, Bayyareddy K, Jones CM, et al. (2012). Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics, 13, 248
  • Tetreau G, Stalinski R, David JP, Despres L. (2013). Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem I Oswaldo Cruz, 108, 894–900
  • Tiewsiri K, Wang P. (2011). Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. P Natl Acad Sci-Biol, 108, 14037–42
  • Vachon V, Laprade R, Schwartz JL. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol, 111, 1–12
  • Vu KD, Yan S, Tyagi RD, et al. (2009). Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. Bioresource Technol, 100, 5260–9
  • Wang SL, Lin TY, Yen YH, et al. (2006). Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res, 341, 2507–15
  • Wiwat C, Thaithanun S, Pantuwatana S, Bhumiratana A. (2000). Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J Invertebr Pathol, 76, 270–7
  • Wirth MC, Walton WE, Federici BA (2012). Inheritance, stability, and dominance of Cry resistance in Culex quinquefasciatus (Diptera: Culicidae) selected with the three Cry toxins of Bacillus thuringiensis subsp. israelensis. J Med Entomol, 49, 886–94
  • Wong SYR. (2009). A study on the cytotoxic effect of Bacillus thuringiensis 18 toxin on a leukaemic cell line (CEM-SS). Thesis submitted to the International Medical University, Malaysia
  • Yamashita S, Katayama H, Saitoh H, et al. (2005). Typical three-domain Cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J Biochem Tokyo, 138, 663–72
  • Zhang X, Candas M, Griko NB, et al. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ, 12, 1407–16
  • Zhuang MB, Oltean DI, Gómez I, et al. (2002). Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem, 277, 13863–72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.