1,300
Views
85
CrossRef citations to date
0
Altmetric
Review Article

Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting

, , , &
Pages 341-352 | Received 10 Feb 2014, Accepted 23 Jul 2014, Published online: 29 Sep 2014

References

  • Abeliovich A, Weisman D. (1978). Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. Appl Environ Microbiol, 35, 32–7
  • Adachi M, Fukami K, Kondo R, Nishijima T. (2002). Identification of marine algicidal Flavobacterium sp. 5 N-3 using multiple probes and whole-cell hybridization. Fisheries Sci, 68, 713–20
  • Amaro AM, Fuentes MS, Ogalde SR, et al. (2005). Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J Eukaryot Microbiol, 52, 191–200
  • Amin SA, Green DH, Hart MC, et al. (2009). Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci, 106, 17071–6
  • Angermayr SA, Hellingwerf KJ, Lindblad P, De Mattos TMJ. (2009). Energy biotechnology with cyanobacteria. Curr Opin Biotech, 20, 257–63
  • Azam F, Malfatti F. (2007). Microbial structuring of marine ecosystems. Nat Rev Microbiol, 5, 782–91
  • Bai S, Huang L, Su J, et al. (2011). Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense. Curr Microbiol, 62, 1774–81
  • Barlaan EA, Furukawa S, Takeuchi K. (2007). Detection of bacteria associated with harmful algal blooms from coastal and microcosm environments using electronic microarrays. Environ Microbiol, 9, 690–702
  • Bartosch S, Fite A, Macfarlane GT, Mcmurdo MET. (2004). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 70, 3575–81
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. (2009). Engineering algae for biohydrogen and biofuel production. Curr Opin Biotech, 20, 264–71
  • Benemann J. (2013). Microalgae for biofuels and animal feeds. Energies, 6, 5869–86
  • Bertrand EM, Saito MA, Rose JM, et al. (2007). Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr, 52, 1079–93
  • Borowitzka M. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol, 7, 3–15
  • Bowen JD, Stolzenbach KD, Chisholm SW. (1993). Simulating bacterial clustering around phytoplankton cells in a turbulent ocean. Limnol Oceanogr, 38, 36–51
  • Bruckner CG, Bahulikar R, Rahalkar M, et al. (2008). Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol, 74, 7740–9
  • Brussaard CPD, Riegman R. (1998). Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquat Microb Ecol, 14, 271–80
  • Cassler M, Peterson C, Ledger A, et al. (2008). Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge Vetulina sp. Microbial Ecol, 55, 384–94
  • Chen C-Y, Yeh K-L, Aisyah R, et al. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 102, 71–81
  • Chiaramonti D. (2007). Bioethanol: role and production technologies. In: Ranalli P, ed. Improvement of crop plants for industrial end uses. Netherlands: Springer, 209–51
  • Chisti Y. (2007). Biodiesel from microalgae. Biotechnol Adv, 25, 294–306
  • Chisti Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol, 26, 126–31
  • Chisti Y. (2010). Fuels from microalgae. Biofuels, 1, 233–5
  • Cole JJ. (1982). Interactions between bacteria and algae in aquatic ecosystems. Ann Rew Ecol Syst, 13, 291–314
  • Converti A, Casazza AA, Ortiz EY, et al. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process, 48, 1146–51
  • Croft MT, Lawrence AD, Raux-Deery E, et al. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, 90–3
  • Currie DJ, Kalff J. (1984). A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr, 29, 298–310
  • De-Bashan LE, Antoun H, Bashan Y. (2008). Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol, 44, 938–47
  • Doebbe A, Rupprecht J, Beckmann J, et al. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol, 131, 27–33
  • Doucette GJ, Mcgovern ER, Babinchak JA. (1999). Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I: bacterial isolation and characterization of killing activity. J Phycol, 35, 1447–54
  • Doucette GJ. (1995). Interaction between bacteria and harmful algae: a review. Nat Toxins, 3, 65–74
  • Dunahay TG, Jarvis EE, Roessler PG. (1995). Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol, 31, 1004–12
  • Fandino LB, Riemann L, Steward GF, et al. (2001). Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol, 23, 119–30
  • Feng Y, Racke KD, Bollag JM. (1997). Use of immobilized bacteria to treat industrial wastewater containing a chlorinated pyridinol. Appl Microbiol Biotechnol, 47, 73–77
  • Ferrier M, Martin J, Rooney-Varga J. (2002). Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy. J Appl Microbiol, 92, 706–16
  • Fierer N, Jackson JA, Vilgalys R, Jackson RB. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol, 71, 4117–20
  • Foster RA, Kuypers MMM, Vagner T, et al. (2011). Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J, 5, 1484–93
  • Gardes A, Iversen MH, Grossart H-P, et al. (2011). Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J, 5, 436–45
  • Geng H, Bruhn JB, Nielsen KF, et al. (2008). Genetic dissection of tropodithietic acid biosynthesis by marine Roseobacters. Appl Environ Microbiol, 74, 1535–45
  • Goecke F, Thiel V, Wiese J, et al. (2013). Algae as an important environment for bacteria – phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 52, 14–24
  • Gonzalez LE, Bashan Y. (2000). Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol, 66, 1527–31
  • Gouveia L, Oliveira C. (2009). Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol, 36, 269–74
  • Grossart HP, Czub G, Simon M. (2006a). Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol, 8, 1074–84
  • Grossart HP, Kiørboe T, Tang KW, et al. (2006b). Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquat Microb Ecol, 42, 19–26
  • Grossart HP, Levold F, Allgaier M, et al. (2005). Marine diatom species harbour distinct bacterial communities. Environ Microbiol, 7, 860–73
  • Grossart HP, Simon M. (2007). Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol, 47, 163–76
  • Gudin C, Thepenier C. (1986). Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process, 6, 73–110
  • Gurung TB, Urabe J, Nakanishi M. (1999). Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat Microb Ecol, 17, 27–35
  • Hallas LE, Adams WJ, Heitkamp MA. (1992). Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent. Appl Environ Microbiol, 58, 1215–9
  • Hasegawa Y, Martin JL, Giewat MW, Rooney-Varga JN. (2007). Microbial community diversity in the phycosphere of natural populations of the toxic alga, Alexandrium fundyense. Environ Microbiol, 9, 3108–21
  • Haystead A, Robinson R, Stewart WDP. (1970). Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae. Arch Microbiol, 74, 235–43
  • Hernandez J-P, De-Bashan LE, Rodriguez DJ, et al. (2009). Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol, 45, 88–93
  • Hoffmann M, Marxen K, Schulz R, Vanselow KH. (2010). TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar Drugs, 8, 2526–45
  • Hu Q, Sommerfeld M, Jarvis E, et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 54, 621–39
  • Illman AM, Scragg AH, Shales SW. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech, 27, 631–5
  • Jiang L, Yang L, Xiao L, et al. (2007). Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia, 581, 161–5
  • Jorquera O, Kiperstok A, Sales EA, et al. (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol, 101, 1406–13
  • Keshtacher-Liebso E, Hadar Y, Chen Y. (1995). Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Appl Environ Microbiol, 61, 2439–41
  • Kononova SV, Nesmeyanova MA. (2002). Phosphonates and their degradation by microorganisms. Biochemistry (Moscow), 67, 184–95
  • Körbitz W. (1999). Biodiesel production in Europe and North America, an encouraging prospect. Renew Energ, 16, 1078–83
  • Krohn-Molt I, Wemheuer B, Alawi M, et al. (2013). Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol, 79, 6196–206
  • Lee C, Kim J, Shin SG, Hwang S. (2008). Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol, 65, 544–54
  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG. (2004). Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science, 305, 997–1000
  • Lewin RA. (1997). Saprospira grandis: a Flexibacterium that can catch bacterial prey by “Ixotrophy”. Microb Ecol, 34, 232–6
  • Li Q, Du W, Liu D. (2008a). Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol, 80, 749–56
  • Li X, Hu H, Gan K, Sun Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol, 101, 5494–500
  • Li Y, Han D, Sommerfeld M, Hu Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol, 102, 123–9
  • Li Y, Horsman M, Wu N, et al. (2008b). Biofuels from microalgae. Biotechnol Progr, 24, 815–20
  • Liu H, Zhou Y, Xiao W, et al. (2012). Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay. Microbio Res, 167, 292–8
  • Long SR. (1989). Rhizobium-legume nodulation: life together in the underground. Cell, 56, 203–14
  • Lovejoy C, Bowman JP, Hallegraeff GM. (1998). Algicidal effects of a novel marine Pseudoalteromonas Isolate (class Proteobacteria, Gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol, 64, 2806–13
  • Maruyama A, Maeda M, Simidu U. (1986). Occurrence of plant hormone (cytokinin)-producing bacteria in the sea. J Appl Microbiol, 61, 569–74
  • Mata TM, Martins AA, Caetano NS. (2010). Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev, 14, 217–32
  • Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y. (2005). Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307, 1598
  • Mayali X, Azam F. (2004). Algicidal bacteria in the sea and their impact on algal blooms. J Eukar Microbiol, 51, 139–44
  • Mohamed NM, Colman AS, Tal Y, Hill RT. (2008). Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol, 10, 2910–21
  • Montoya JP, Holl CM, Zehr JP, et al. (2004). High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature, 430, 1027–32
  • Mouget JL, Dakhama A, Lavoie MC, de la Noüe J. (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol, 18, 35–43
  • Nakase G, Eguchi M. (2007). Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production. Fisheries Sci, 73, 543–9
  • Otsuka S, Abe Y, Fukui R, et al. (2008). Presence of previously undescribed bacterial taxa in non-axenic Chlorella cultures. J Gen Appl Microbiol, 54, 187–93
  • Paytan A, Mclaughlin K. (2007). The oceanic phosphorus cycle. Chem Rev, 107, 563–76
  • Pienkos PT, Darzins A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioresour, 3, 431–40
  • Powell RJ, Hill RT. (2013). Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol, 79, 6093–101
  • Powell RJ, Hill RT. (2014). Mechanism of algal aggregation by Bacillus sp. strain RP1137. Appl Environ Microbiol, 80, 4042–50
  • Reijnders L. (2008). Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol, 26, 349–50
  • Riemann L, Steward GF, Azam F. (2000). Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol, 66, 578–87
  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. (2003). Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J biol chem, 278, 41148–59
  • Rodolfi L, Chini Zittelli G, Bassi N, et al. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng, 102, 100–12
  • Rodolfi L, Zittelli GC, Barsanti L, et al. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng, 20, 243–8
  • Sala MM, Balague V, Pedros-Alio C, et al. (2005). Phylogenetic and functional diversity of bacterioplankton during Alexandrium spp. blooms. FEMS Microbiol Ecol, 54, 257–67
  • Sapp M, Schwaderer A, Wiltshire K, et al. (2007a). Species-specific bacterial communities in the phycosphere of microalgae? Microbial Ecol, 53, 683–99
  • Sapp M, Wichels A, Gerdts G. (2007b). Impacts of cultivation of marine diatoms on the associated bacterial community. Appl Environ Microbiol, 73, 3117–20
  • Schafer H, Abbas B, Witte H, Muyzer G. (2002). Genetic diversity of ‘satellite' bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol, 42, 25–35
  • Schenk P, Thomas-Hall S, Stephens E, et al. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res, 1, 20–43
  • Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. (2011). The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem, 3, 331–5
  • Shannon KE, Lee DY, Trevors JT, Beaudette LA. (2007). Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ, 382, 121–9
  • Sheehan JT, Dunahay J, Roessler PG. (1998). A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. Available from: http://www.nrel.gov/docs/legosti/fy98/24190.pdf
  • Shen H, Niu Y, Xie P, et al. (2011). Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biol, 56, 1065–80
  • Simon N, Biegala IC, Smith EA, Vaulot D. (2002). Kinetics of attachment of potentially toxic bacteria to Alexandrium tamarense. Aquat Microb Ecol, 28, 249–56
  • Skerratt JH, Bowman JP, Hallegraeff G, et al. (2002). Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser, 244, 1–15
  • Spoehr H, Milner H. (1949). The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol, 24, 120–49
  • Su J, Yang X, Zheng T, et al. (2007b). Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae, 6, 799–810
  • Su J, Yang X, Zheng T, Hong H. (2007a). An efficient method to obtain axenic cultures of Alexandrium tamarense – a PSP-producing dinoflagellate. J Microbio Methods, 69, 425–30
  • Su J, Yang X, Zhou Y, Zheng T. (2011). Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biol Control, 56, 132–8
  • Sukenik A, Beardall J, Kromkamp J, et al. (2009). Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol, 56, 297–308
  • Tsavkelova E, Klimova S, Cherdyntseva T, Netrusov A. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol, 42, 117–26
  • Ueda H, Otsuka S, Senoo K. (2009). Community composition of bacteria co-cultivated with microalgae in non-axenic algal cultures. Microbiol Cult Coll, 25, 21–5
  • Wang B, Zhou Y, Bai S, et al. (2010a). A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense. Lett Appl Microbiol, 51, 552–7
  • Wang D, Ning K, Li J, et al. (2014). Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet, 10, e1004094
  • Wang H, Laughinghouse HD, Anderson MA, et al. (2012). Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1. Appl Environ Microbiol, 78, 1445–53
  • Wang W, Wang L, Shao Z. (2010b). Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen island. Microbial Ecol, 60, 429–39
  • Wang X, Li Z, Su J, et al. (2010c). Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol Control, 52, 123–30
  • Watanabe K, Takihana N, Aoyagi H, et al. (2005). Symbiotic association in Chlorella culture. FEMS Microbiol Ecol, 51, 187–96
  • Wichels A, Hummert C, Elbrachter M, et al. (2004). Bacterial diversity in toxic Alexandrium tamarense blooms off the Orkney Isles and the Firth of Forth. Helgoland Mar Res, 58, 93–103
  • Yeh K-L, Chang J-S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J, 6, 1358–66
  • Yergeau E, Arbour M, Brousseau R, et al. (2009). Microarray and real-time PCR analyses of the responses of high-Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol, 75, 6258–67
  • Zhang X, Hu Q, Sommerfeld M, et al. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol, 101, 5297–304
  • Zubkov MV, Mary I, Woodward EMS, et al. (2007). Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environ Microbiol, 9, 2079–89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.