1,152
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource

, , , &
Pages 399-415 | Received 16 Oct 2013, Accepted 30 Jun 2014, Published online: 02 Feb 2015

References

  • Abalos A, Pinazo A, Infante MR, et al. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17, 1367–71
  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA. (2008). Characterization of surfactin produced by Bacillus subtilis Isolate BS5. Appl Biochem Biotechnol, 150, 289–303
  • Abdel-Mawgoud AM, Lepine F, Déziel E. (2010). Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol, 86, 1323–36
  • Abdel-Mawgoud, AM, Lépine F, Déziel E. (2014). A Stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol, 21, 156–64
  • Allard AS, Neilson AH. (1997). Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeter Biodegrad, 39, 253–285
  • Andreas W, Tiso T, Torsten TA, et al. (2011). Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact, 10, 80
  • Aşçi Y, Nurbaş M, Açikel YS. (2007). Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. J Hazard Mater, 139, 50–6
  • Aşçi Y, Nurbaş M, Açikel YS. (2010). Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manage, 91, 724–31
  • Babu PS, Vaidya AN, Bal AS, et al. (1996). Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett, 18, 263–8
  • Banat IM. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol, 51, 1–12
  • Basnet M, Ghoshal S, Tufenkji N. (2013). Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environ Sci Technol, 47, 13355–64
  • Biswas M, Raichur AM. (2008). Electrokinetic and rheological properties of nano zirconia in the presence of rhamnolipid biosurfactant. J Am Ceram Soc, 91, 3197–201
  • Bodour AA, Maier RM. (1998). Application of a modified drop collapsing technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods, 32, 273–80
  • Burch AY, Shimada SK, Browne PJ, Lindow SE. (2010). Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol, 76, 5363–72
  • Cameotra SS, Singh P. (2009). Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact, 8, 16
  • Chandrasekaran EV, Bemiller JN. (1980). Constituent analyses of glycosamino-glycans. In: Whistler RL, ed. Methods in carbohydrate chemistry. New York: Academic Press Inc., 89–96
  • Chávez GS, Lépine F, Déziel E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 68, 718–25
  • Chen J, Xin S, Zhang H, Qu Y. (2006). Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb Technol, 39, 501–6
  • Chen M, Dong C, Penfold J, et al. (2013). Influence of calcium ions on rhamnolipid and rhamnolipid/anionic surfactant adsorption and self-assembly. Langmuir, 29, 3912–23
  • Chen SY, Wei YH, Chang JS. (2007). Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol, 76, 67–74
  • Christofi N, Ivshina IB. (2002). A review, Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol, 93, 915–29
  • Christova N, Tuleva B, Lalchev Z, et al. (2004). Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch C, 59, 70–4
  • Chrzanowski Ł, Ławniczak Ł, Czaczyk K. (2012). Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol, 28, 401–19
  • Darvishi P, Ayatollahi S, Mowla D, Niazi A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B Biointerfaces, 84, 292–300
  • Desai J, Banat I. (1997). Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev, 61, 47–64
  • Déziel E, Lépine F, Milot S, Villemur R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa 57RP. Biochim Biophys Acta, 1485, 145–15
  • Déziel E, Lepine F, Milot S, Villemur R. (2003). RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149, 2005–13
  • Dubeau D, Déziel E, Woods D, Lépine F. (2009). Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol, 9, 263
  • Dusane DH, Dam S, Nancharaiah YV, et al. (2012). Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst, 8, 17
  • Dusane DH, Damare SR, Nancharaiah YV, et al. (2013). Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One, 8, e64501
  • Dusane DH, Matkar P, Venugopalan VP, et al. (2011a). Cross species induction of antimicrobial compounds, biosurfactants and quorum sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr Microbiol, 62, 974–80
  • Dusane DH, Nancharaiah YV, Venugopalan VP, Zinjarde SS. (2010a). Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces, 81, 242–8
  • Dusane DH, Pawar VS, Nancharaiah YV, et al. (2011b). Antibiofilm potential of a glycolipid biosurfactant produced by a tropical marine strain of Serratia marcescens. Biofouling, 27, 645–54
  • Dusane DH, Zinjarde SS, Venugopalan VP, et al. (2010b). Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Gen Eng Rev, 27, 159–84
  • Fariasa CBB, Silvaa AF, Rufinoa RD, et al. (2014). Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Elec J Biotechnol, 17, 122–5
  • Faulkner DJ. (2000). Marine pharmacology. Int J Gen Mol Microbiol, 77, 135–45
  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–91
  • Frazer L. (2000). Innovations, lipid lather removes metals. Environ Health Perspect, 108, 320–3
  • Gandhimathi R, Kiran SG, Hema TA, et al. (2009). Production and characterization of lipopeptide biosurfactant by a sponge associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng, 32, 825–35
  • Guerra-Santos LH, Kappeli O, Fiechter A. (1984). Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol, 48, 301–5
  • Guerra-Santos LH, Kappeli O, Fiechter A. (1986). Dependance of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol, 24, 443–8
  • Gunther NWIV, Nunez A, Fett W, Solaiman DK. (2005). Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol, 71, 2288–93
  • Gunther NWIV, Nunez A, Fortis L, Solaiman DKY. (2006). Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761. J Ind Microbiol Biotechnol, 33, 914–20
  • Haba E, Espuny MJ, Busquets M, Manresa A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol, 88, 379–87
  • Handelsman J. (2009). Metagenetics: spending our inheritance on the future. Microb Biotechnol, 2, 138–9
  • Hassanshahian M, Emtiazi G, Cappello S. (2012). Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull, 64, 7–12
  • Haussler S, Nimtz M, Domke T, et al. (1998). Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun, 66, 1588–93
  • Healy MG, Devine CM, Murphy R. (1996). Microbial production of biosurfactants. Resour Conserv Recycling, 18, 41–57
  • Helbert JR, Brown KD. (1957). Color reaction of anthrone with monosaccharide mixtures and oligo- and polysaccharides containing hexuronic acids. Anal Chem, 29, 1464–6
  • Hema TA. (2014). Development of novel biosurfactants with biofilm disruption and hydrocarbon degradation potentials from marine bacteria. PhD thesis, Bharathidasan University, Trichy, India
  • Hema TA, Kiran GS, Selvin J, et al. (2010). Optimization and characterization of rhamnolipid biosurfactant from sponge associated marine fungi Aspergillus sp. MSF1. Desal Water Treat, 24, 257–65
  • Henkel M, Müller MM, Kügler JH, et al. (2012). Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Proc Biochem, 47, 1207–19
  • Herman DC, Artiola JF, Miller RM. (1995). Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol, 29, 2280–5
  • Hodge JE, Hofreiter BT. (1962). Carbohydrates. In: Whistler RL, Wolfrom ML, eds. Methods in carbohydrate chemistry. New York: Academic Press, 380
  • Hua Z, Chen Y, Du G, Chen J. (2004). Effects of biosurfactants produced by Candida Antarctica on the biodegradation of petroleum compounds. World J Microbiol Biotechnol, 20, 25–9
  • Jadhav VVA, Yadav AC, Shouche YSC, et al. (2013). Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from antarctic sea water. Desalination, 318, 64–71
  • Jarvis FG, Johnson MJ. (1949). A glyco-lipid produced by Pseudomonas aeruginosa. J Am Chem Soc, 71, 4124–6
  • Jones DT, Taylor WR, Thornton JM. (1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 8, 275–82
  • Kennedy J, O’Leary ND, Kiran GS, et al. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol, 111, 787–99
  • Khopade A, Biao R, Liu X, et al. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198–204
  • Kiran GS. (2009). Development of novel biosurfactants from marine actinobacteria: process optimization, in vitro evaluation and molecular analysis. PhD thesis, Bharathidasan University, Trichy, India
  • Kiran GS, Anto Thomas T, Selvin J. (2010a). Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf B Biointerfaces, 78, 8–16
  • Kiran GS, Anto Thomas T, Selvin J, et al. (2010b). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol, 101, 2389–96
  • Kiran GS, Hema TA, Gandhimathi R, et al. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces, 73, 250–6
  • Kiran GS, Lipton AN, Priyadharshini S, et al. (2014). Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol, 14, 48
  • Kiran GS, Sabarathnam B, Selvin J. (2010c). Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol, 59, 432–8
  • Kiran GS, Sabarathnam B, Thajuddin N, Selvin J. (2014a). Production of glycolipid biosurfactant from sponge-associated marine actinobacterium brachybacterium paraconglomeratum MSA21. J Surfact Deterg, 17, 531–42
  • Kiran GS, Sabu A, Selvin J. (2010d). Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol, 148, 221–5
  • Kiran GS, Selvin J, Manilal A, Sujith S. (2011). Biosurfactants as green stabilizer for the biological synthesis of nanoparticles. Crit Rev Biotechnol, 31, 354–64
  • Kirschner ZI, Rosenberg E, Gutnick D. (1980). Incorporation of P32 and growth of Pseudomonad UP-2 on n-tetracosane. Appl Environ Microbiol, 40, 1086–93
  • Koch A, Reiser J, Kapelli O, Fiechter A. (1988). Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Nat Biotechnol, 6, 1335–9
  • Krishna C. (2005). Aolid-state fermentation systems - an overview. Crit Rev Biotechnol, 25, 1–30
  • Kryachko Y, Nathoo S, Lai P, et al. (2013). Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Inter Biodet Biodeg, 81, 133–40
  • Lang S, Wagner F. (1987). Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and biotechnology. New York: Marcel Dekker, 21–45
  • Latifi A, Foglino M, Tanaka K, et al. (1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhiR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol, 21, 1137–46
  • Latifi A, Winson MK, Foglino M, et al. (1995). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol, 17, 333–43
  • Ławniczak LA, Marecik RB, Chrzanowski L. (2013). Contributions of biosurfactants to natural or induced bioremediation. Appl Microb Biotechnol, 97, 2327–39
  • Liu CA, Zhao WA, Li, TB, Wang, HY. (2013). Isolation and identification of a cold-adapted biosurfactant-producing bacterium. Chin J Ecol, 32, 1075–82
  • Lombard V, Golaconda Ramulu H, Drula E, et al. (2014). The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 42, D490–5
  • Maier RM, Soberón-Chávez G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol, 54, 625–33
  • Marchant R, Banat MI. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trend Biotechnol, 30, 558–65
  • McCue KF, Allen PV, Shepherd LV, et al. (2007). Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry, 68, 327–34
  • Meylheuc T, van Oss CJ, Bellon-Fontaine MN. (2001). Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J Appl Microbiol, 91, 822–32
  • Müller MM, Kügler JH, Henkel M, et al. (2012). Rhamnolipids – next generation surfactants. J Biotechnol, 162, 366–80
  • Mulligan CN, Wang S. (2006). Remediation of a heavy-metal contaminated soil by rhamnolipid foam. Eng Geol, 85, 75–81
  • Mulligan CN. (2005). Environmental applications for biosurfactants. Environ Pollut, 133, 183–98
  • Nayak AS, Vijaykumar MH, Karegoudar TB. (2009). Characterization of biosurfactant produced by Pseudoxanthomonas sp PNK-04 and its application in bioremediation. Int Biodeter Biodegrad, 63, 73–9
  • Nei M, Kumar S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press
  • Nitschke M, Costa SG, Contiero J. (2005). Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog, 21, 1593–600
  • Ochsner UA, Fiechter A, Reiser J. (1994a). Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem, 269, 19787–95
  • Ochsner UA, Hembach T, Fiechter A. (1996). Production of rhamnolipid biosurfactants. Adv Biochem Eng Biotechnol, 53, 89–118
  • Ochsner UA, Koch AK, Fiechter A, Reiser J. (1994b). Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol, 176, 2044–54
  • Ohlendorf B, Lorenzen W, Kehraus S, et al. (2008). Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J Nat Prod, 7, 82–6
  • Okkotsu Y, Tieku P, Fitzsimmons LF, et al. (2013). Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol, 195, 5499–515
  • Onbasli D, Aslim B. (2009). Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol, 30, 161–3
  • Pantazaki AA, Choli-Papadopoulou T. (2012). On the Thermusthermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line. Amino Acids, 42, 1913–26
  • Pawlik JR, McFall G, Zea S. (2002). Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol, 28, 1103–15
  • Pearson JP, Pesci EC, Iglewski BH. (1997). Roles of Peudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol, 179, 5756–67
  • Pinzon NM, Ju LK. (2009). Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett, 31, 1583–8
  • Pradhan AK, Pradhan N, Sukla LB, et al. (2014). Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9. Bioprocess Biosyst Eng, 37, 139–49
  • Pruthi V, Cameotra SS. (1997). Rapid identification of biosurfactant producing bacterial strains using a cell surface hydrophobicity technique. Biotecnol Tech, 11, 671–4
  • Rahim R, Ochsner UA, Olvera C, et al. (2001). Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for dirhamnolipid biosynthesis. Mol Microbiol, 40, 708–18
  • Rahman KSM, Rahman TJ, McClean S, et al. (2002). Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog, 18, 1277–81
  • Rangarajan V, Sen R. (2013). An inexpensive strategy for facilitated recovery of metals and fermentation products by foam fractionation process. Colloids Surf B Biointerface, 104, 99–106
  • Reddy AS, Chen CY, Chen CC, et al. (2009). Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J Nanosci Nanotechnol, 9, 6693–9
  • Reiling HE, Wyass UT, Guerra-Santos LH, et al. (1986). Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol, 51, 985–9
  • Reis RS, Pereira AG, Neves BC, Freire DM. (2011). Gene regulation of rhamnolipid production in Pseudomonas aeruginosa – a review. Bioresour Technol, 102, 6377–84
  • Rezanka T, Siristova L, Sigler K. (2011). Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles, 15, 697–709
  • Rooney AP, Price NP, Ray KJ, Kuo TM. (2009). Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett, 295, 82–7
  • Ross J, Li Y, Lim E, Bowles DJ. (2001). Higher plant glycosyltransferases. Genome Biol, 2, 3004.1–3004.6
  • Sachdev DPA, Cameotra SSB. (2013). Biosurfactants in agriculture. Appl Microbiol Biotechnol, 97, 1005–16
  • Saeedi LH, Assadi MM, Heydarian SM, Jahangiri M. (2014). The production and evaluation of a nano-biosurfactant. Pet Sci Technol, 32, 125–32
  • Saikia JP, Bharali P, Konwar BK. (2013). Possible protection of silver nanoparticles against salt by using rhamnolipid. Colloids Surf B Biointerface, 104, 330–2
  • Saimmai A, Kaewrueng J, Maneerat S. (2012). Used lubricating oil degradation and biosurfactant production by SC-9 consortia obtained from oil-contaminated soil. Ann Microbiol, 62, 1757–67
  • Saitou N, Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–25
  • Satpute SK, Banat IM, Dhakephalkar PK, et al. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv, 28, 436–50
  • Selvin J, Ninawe AS, Kiran GS, Lipton AP. (2010). Sponge-microbial interactions: ecological implications and bioprospecting avenues. Crit Rev Microbiol, 36, 82–90
  • Selvin J, Thangavelu T, Gandhimathi R, Priya SS. (2009). Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria. Helgoland Mar Res, 63, 239–24
  • Shubhrasekhar C, Supriya M, Karthik L, et al. (2013). Isolation, characterization and application of biosurfactant produced by marine actinobacteria isolated from saltpan soil from costal area of Andhra Pradesh, India. Res J Biotechnol, 8, 18–25
  • Singh P, Cameotra SS. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol, 22, 142–6
  • Sousa TD, Bhosle S. (2012). Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem. Bioresour Technol, 123, 256–62
  • Syldatk C, Wagner F. (1987). Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, ed. Biosurfactants and biotechnology. New York: Marcel Dekker Inc., 89–120
  • Tamura K, Peterson D, Peterson N, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28, 2731–9
  • Thavasi R, Jayalakshmi S, Banat IM. (2011). Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium and Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresour Technol, 102, 772–8
  • Tuleva BK, Ivanov GR, Christova NE. (2002). Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch, 57, 356–60
  • Urum K, Pekdemir T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–50
  • Vasileva-Tonkova E, Gesheva V. (2007). Biosurfactant production by Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol, 54, 136–41
  • Vasileva-Tonkova E, Gesheva V. (2005). Glycolipids produced by antarctic Nocardioides sp. during growth on n-paraffin. Process Biochem, 40, 2387–91
  • Vyas TK, Dave BP. (2011). Production of biosurfactant by Nocardia otitidiscaviarum and its role in biodegradation of crude oil. Int J Environ Sci Tech, 8, 425–32
  • Xie F, Baker MS, Goldys EM. (2006). Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J Phys Chem B, 110, 23085–91
  • Xie W, Vu K, Yang G, et al. (2014). Escherichia coli growth and transport in the presence of nanosilver under variable growth conditions. Environ Technol, 35, 2306–13
  • Yang XLAB, Awakawa TA, Wakimoto TA, Abe IA. (2013). Induced production of the novel glycolipid ustilagic acid C in the plant pathogen Ustilago maydis. Tetrahedron Lett, 54, 3655–7
  • Yonebayashi H, Yoshida S, Ono K, Enomoto H. (2000). Screening of microorganisms for microbial enhanced oil recovery process. Sekiyu Gakkaishi, 43, 59–69
  • Zhang H, Xiang H, Zhang G, et al. (2009). Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipids solution. J Hazard Mater, 167, 217–23
  • Zhang XS. (2014). A pilot study on screening and simplified fermentation of a biosurfactant producing strain with seawater. Res J Biotechnol, 9, 74–9
  • Zhang Y, Miller RM. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol, 58, 3276–82
  • Zhu K, Rock CO. (2008). RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol, 190, 3147–54
  • Zhu Z, Zhang F, Wei Z, et al. (2013). The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Manage, 127, 96–102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.