1,019
Views
16
CrossRef citations to date
0
Altmetric
Review Article

On the road to synthetic life: the minimal cell and genome-scale engineering

Pages 416-423 | Received 16 Sep 2013, Accepted 02 Nov 2014, Published online: 12 Jan 2015

References

  • Annaluru N, Muller H, Mitchell LA, et al. (2014). Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–8
  • Baba T, Ara T, Hasegawa M, et al. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2, 2006–8
  • Benders GA, Noskov VN, Denisova EA, et al. (2010). Cloning whole bacterial genomes in yeast. Nucleic Acids Res, 38, 2558–69
  • Benkovic S, Baker S, Alley M, et al. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J Med Chem, 48, 7468–76
  • Blake WJ, Chapman BA, Zindal A, et al. (2010). Pairwise selection assembly for sequence-independent construction of long-length DNA. Nucleic Acids Res, 38, 2594–602
  • Bohannon J. (2011). The life hacker. Science, 333, 1236–7
  • Boyle NR, Reynolds TS, Evans R, et al. (2013). Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol J, 8, 515–22
  • Bution ML, Molina G, Abrahão MR, Pastore GM. (2014). Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates. Crit Rev Biotechnol. [Epub ahead of print]
  • Carr PA, Wang HH, Sterling B, et al. (2012). Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res, 40, e132
  • Chopra I. (2007). Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents. Curr Opin Investig Drugs, 8, 600–7
  • Chung H, Yao Z, Goehring N, et al. (2009). Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci USA, 106, 21872–7
  • Cong L, Ran FA, Cox D, et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–23
  • Copeland MF, Politz MC, Pfleger BF. (2014). Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr Opin Biotechnol, 29C, 46–54
  • De Berardinis V, Vallenet D, Castelli V, et al. (2008). A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol, 4, Article number: 174
  • Delaye L, González-Domenech CM, Garcillán-Barcia MP, et al. (2011). Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942. BMC Genomics, 12, 25
  • DiCarlo JE, Conley AJ, Penttilä M, et al. (2013a). Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol, 2, 741–9
  • DiCarlo JE, Norville JE, Mali P, et al. (2013b). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 41, 4336–43
  • Dolt KS, Lawrence ML, Miller-Hodges E, et al. (2013). A universal vector for high-efficiency multi-fragment recombineering of BACs and knock-in constructs. PLoS One, 8, e62054
  • Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ. (2013). TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol, 23, 390–8
  • Dymond JS, Richardson SM, Coombes CE, et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477, 471–6
  • Enyeart PJ, Ellington AD. (2011). Synthetic biology: a yeast for all reasons. Nature, 477, 413–14
  • Fehér T, Burland V, Pósfai G. (2012a). In the fast lane: large-scale bacterial genome engineering. J Biotechnol, 160, 72–9
  • Fehér T, Karcagi I, Blattner FR, Pósfai G. (2012b). Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol, 5, 466–76
  • Fehér T, Papp B, Pal C, Pósfai G. (2007). Systematic genome reductions: theoretical and experimental approaches. Chem Rev, 107, 3498–513
  • Fineran PC, Dy RL. (2014). Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol, 18C, 83–9
  • Fischbach M, Walsh C. (2009). Antibiotics for emerging pathogens. Science, 325, 1089–93
  • Forster AC, Church GM. (2006). Towards synthesis of a minimal cell. Mol Syst Biol, 2, Article number: 45
  • French CT, Lao P, Loraine AE, et al. (2008). Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol, 69, 67–76
  • Gaj T, Gersbach CA, Barbas CF. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31, 397–405
  • Ghosal A, Nielsen PE. (2012). Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther, 22, 323–34
  • Gibson D, Benders G, Andrews-Pfannkoch C, et al. (2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–20
  • Gibson D, Glass J, Lartigue C, et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–6
  • Gibson D, Young L, Chuang R, et al. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 6, 343–5
  • Glass J, Assad-Garcia N, Alperovich N, et al. (2006). Essential genes of a minimal bacterium. Proc Natl Acad Sci USA, 103, 425–30
  • Glass JI. (2012). Synthetic genomics and the construction of a synthetic bacterial cell. Perspect Biol Med, 55, 473–89
  • Hirokawa Y, Kawano H, Tanaka-Masuda K, et al. (2013). Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. J Biosci Bioeng, 116, 52–8
  • Hwang WY, Fu Y, Reyon D, et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31, 227–9
  • Isaacs FJ, Carr PA, Wang HH, et al. (2011). Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333, 348–53
  • Itaya M. (2010). A synthetic DNA transplant. Nat Biotechnol, 28, 687–9
  • Itaya M, Fujita K, Kuroki A, Tsuge K. (2008). Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods, 5, 41–3
  • Itaya M, Kaneko S. (2010). Integration of stable extracellular DNA released from Escherichia coli into the Bacillus subtilis genome vector by culture mix method. Nucleic Acids Res, 38, 2551–7
  • Jewett MC, Forster AC. (2010). Update on designing and building minimal cells. Curr Opin Biotechnol, 21, 697–703
  • Juhas M, Davenport PW, Brown JR, et al. (2013). Meeting report: the Cambridge BioDesign TechEvent – synthetic biology, a new “Age of Wonder”? Biotechnol J, 8, 761–3
  • Juhas M, Eberl L, Church GM. (2012a). Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol, 30, 601–7
  • Juhas M, Eberl L, Glass JI. (2011). Essence of life: essential genes of minimal genomes. Trends Cell Biol, 21, 562–8
  • Juhas M, Stark M, Von Mering C, et al. (2012b). High confidence prediction of essential genes in burkholderia cenocepacia. PLoS One, 7, e40064
  • Juhas M, van der Meer JR, Gaillard M, et al. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev, 33, 376–93
  • Kaneko S, Itaya M. (2010). Designed horizontal transfer of stable giant DNA released from Escherichia coli. J Biochem, 147, 819–22
  • Karas BJ, Jablanovic J, Irvine E, et al. (2014). Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc, 9, 743–50
  • Karas BJ, Jablanovic J, Sun L, et al. (2013a). Direct transfer of whole genomes from bacteria to yeast. Nat Methods, 10, 410–12
  • Karas BJ, Molparia B, Jablanovic J, et al. (2013b). Assembly of eukaryotic algal chromosomes in yeast. J Biol Eng, 7, 30
  • Karas BJ, Tagwerker C, Yonemoto IT, et al. (2012). Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol, 1, 22–8
  • Kato J, Hashimoto M. (2007). Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol, 3, Article number: 132
  • Kosuri S, Eroshenko N, Leproust EM, et al. (2010). Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol, 28, 1295–9
  • Kumar A, Singh S. (2012). Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol, 33, 365–78
  • Lajoie MJ, Gregg CJ, Mosberg JA, et al. (2012). Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Res, 40, e170
  • Lajoie MJ, Kosuri S, Mosberg JA, et al. (2013a). Probing the limits of genetic recoding in essential genes. Science, 342, 361–3
  • Lajoie MJ, Rovner AJ, Goodman DB, et al. (2013b). Genomically recoded organisms expand biological functions. Science, 342, 357–60
  • Langridge GC, Phan MD, Turner DJ, et al. (2009). Simultaneous assay of every Salmonella typhi gene using one million transposon mutants. Genome Res, 19, 2308–16
  • Lartigue C, Glass J, Alperovich N, et al. (2007). Genome transplantation in bacteria: changing one species to another. Science, 317, 632–8
  • Lartigue C, Vashee S, Algire M, et al. (2009). Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 325, 1693–6
  • Li L, Blankenstein T. (2013). Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion. Nat Protoc, 8, 1567–82
  • Li MZ, Elledge SJ. (2007). Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 4, 251–6
  • Liberati N, Urbach J, Miyata S, et al. (2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA, 103, 2833–8
  • Mali P, Yang L, Esvelt KM, et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–6
  • Manabe K, Kageyama Y, Morimoto T, et al. (2011). Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol, 77, 8370–81
  • Marcusson L, Frimodt-Møller N, Hughes D. (2009). Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog, 5, e1000541
  • Matzas M, Stähler PF, Kefer N, et al. (2010). High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol, 28, 1291–4
  • McCutcheon J. (2010). The bacterial essence of tiny symbiont genomes. Curr Opin Microbiol, 13, 73–8
  • McCutcheon J, Mcdonald B, Moran N. (2009). Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet, 5, e1000565
  • McCutcheon JP, Moran NA. (2010). Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol, 2, 708–18
  • McCutcheon JP, Moran NA. (2012). Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol, 10, 13–26
  • Merryman C, Gibson DG. (2012). Methods and applications for assembling large DNA constructs. Metab Eng, 14, 196–204
  • Morimoto T, Kadoya R, Endo K, et al. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res, 15, 73–81
  • Moya A, Gil R, Latorre A, et al. (2009). Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev, 33, 225–35
  • Nandagopal N, Elowitz MB. (2011). Synthetic biology: integrated gene circuits. Science, 333, 1244–8
  • Nawy T. (2011). Yeast 2.0. Nat Methods, 8, 895
  • Noskov VN, Karas BJ, Young L, et al. (2012). Assembly of large, high G + C bacterial DNA fragments in yeast. ACS Synth Biol, 1, 267–73
  • Perkel JM. (2012). Genome engineering: writing a better genome. Biotechniques, 53, 213, 215, 217
  • Pósfai G, Plunkett GR, Fehér T, et al. (2006). Emergent properties of reduced-genome Escherichia coli. Science, 312, 1044–6
  • Quan J, Tian J. (2009). Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One, 4, e6441
  • Quan J, Tian J. (2011). Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc, 6, 242–51
  • Rock FL, Mao W, Yaremchuk A, et al. (2007). An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science, 316, 1759–61
  • Ruder WC, Lu T, Collins JJ. (2011). Synthetic biology moving into the clinic. Science, 333, 1248–52
  • Sampson TR, Weiss DS. (2014). Exploiting CRISPR/Cas systems for biotechnology. Bioessays, 36, 34–8
  • Shoji S, Dambacher CM, Shajani Z, et al. (2011). Systematic chromosomal deletion of bacterial ribosomal protein genes. J Mol Biol, 413, 751–61
  • Sleator RD. (2010). The story of Mycoplasma mycoides JCVI-syn1.0: the forty million dollar microbe. Bioeng Bugs, 1, 229–30
  • Tagwerker C, Dupont CL, Karas BJ, et al. (2012). Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res, 40, 10375–83
  • Tanaka K, Henry CS, Zinner JF, et al. (2013). Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res, 41, 687–99
  • Val ME, Skovgaard O, Ducos-Galand M, et al. (2012). Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS Genet, 8, e1002472
  • van Leuven JT, McCutcheon JP. (2012). An AT mutational bias in the tiny GC-rich endosymbiont genome of Hodgkinia. Genome Biol Evol, 4, 24–7
  • Wang HH, Church GM. (2011). Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol, 498, 409–26
  • Wang HH, Huang PY, Xu G, et al. (2012a). Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol, 1, 43–52
  • Wang HH, Isaacs FJ, Carr PA, et al. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460, 894–8
  • Wang HH, Kim H, Cong L, et al. (2012b). Genome-scale promoter engineering by coselection MAGE. Nat Methods, 9, 591–3
  • Warner JR, Reeder PJ, Karimpour-Fard A, et al. (2010). Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol, 28, 856–62
  • Watanabe S, Shiwa Y, Itaya M, Yoshikawa H. (2012). Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome. J Bacteriol, 194, 7007
  • Werneburg M, Zerbe K, Juhas M, et al. (2012). Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. Chembiochem, 13, 1767–75
  • Yu B, Kang K, Lee J, et al. (2008a). Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res, 36, e84
  • Yu B, Sung B, Koob M, et al. (2002). Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol, 20, 1018–23
  • Yu BJ, Kang KH, Lee JH, et al. (2008b). Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res, 36, e84
  • Zhang Y, Werling U, Edelmann W. (2012). SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res, 40, e55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.