798
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Cell immobilization for microbial production of 1,3-propanediol

, , &
Pages 482-494 | Received 29 Jul 2013, Accepted 03 Nov 2014, Published online: 20 Jan 2015

References

  • Abad S, Turon X. (2012). Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol Adv, 30, 733–41
  • Anex R, Ogletree A. (2006). Life-cycle assessment of energy-based impacts of a biobased process for producing 1,3-propanediol. Feedstocks for the future: renewables for the production of chemicals and materials; ACS Symposium Series 921. Washington, DC: American Chemical Society, 17, 222–38
  • Atabani AE, Silitonga AS, Badruddin IA, et al. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev, 16, 2070–93
  • Barbirato F, Camarasa-Claret C, Grivet JP, Bories A. (1995). Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol, 43, 786–93
  • Biebl H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol, 35, 701–5
  • Biebl H, Marten S, Hippe H, Deckwer W. (1992). Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol, 36, 592–7
  • Casali S, Gungormusler M, Bertin L, et al. (2012). Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem Eng J, 64, 84–90
  • Celinska E. (2010). Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv, 28, 519–30
  • Chang HN, Yoo I, Kim BS. (1994). High density cell culture by membrane-based cell recycle. Biotechnol Adv, 12, 467–87
  • Chang J, Lee K, Lin P. (2002). Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy, 27, 1167–74
  • Chatzifragkou A, Aggelis G, Komaitis M, et al. (2011). Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresour Technol, 102, 10625–32
  • Cheng KK, Zhang JA, Liu DH, et al. (2007). Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem, 42, 740–4
  • Colin T, Bories A, Moulin G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol, 54, 201–5
  • Dabrock B, Bahl H, Gottschalk G. (1992). Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol, 58, 1233–9
  • DuPont Tate and Lyle BioProducts. PDO Benchmarking. Available from http://www.duponttateandlyle.com/sites/default/files/ZemeaHI%26I_lifeCycleAnalysis.pdf [last accessed 10 June 2014]
  • Efythymiou YF, Shuler ML. (1987). Elimination of diffusional limitation in membrane entrapped cell reactor by pressure cycling. Biotechnol Progress, 3, 259–64
  • Fang HH, Liu H, Zhang T. (2002). Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng, 78, 44–52
  • Forsberg CW. (1987). Production of 1,3-Propanediol from Glycerol by Clostridium acetobutylicum and Other Clostridium Species. Appl Environ Microbiol, 53, 639–43
  • Freund A. (1881). Uber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Berichte der Deutschen Chemischen Gesellschaft Berlin, 10, 636–41
  • Gallardo R, Faria C, Rodrigues LR, et al. (2014). Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresour Technol, 155, 28–33
  • Gungormusler M, Gonen C, Azbar N. (2011a). Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae. J Appl Microbiol, 111, 1138–47
  • Gungormusler M, Gonen C, Azbar N. (2011b). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess Biosyst Eng, 34, 727–33
  • Gunzel B, Yonsel S, Deckwer WD. (1991). Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2m3. Appl Microbiol Biotechnol, 36, 289–94
  • Himmi EH, Bories A, Barbirato F. (1999). Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour Technol, 67, 123–8
  • Hirschmann S, Baganz K, Koschik I, Vorlop KD. (2005). Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforschung Völkenrode, 55, 261–7
  • Homann T, Tag C, Biebl H, et al. (1990). Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol, 33, 121–6
  • Hu B, Chen SL. (2007). Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy, 32, 3266–73
  • Huang J, Yamaji H, Fukuda H. (2007). Immobilization of Escherichia coli cells using porous support particles coated with cationic polymers. J Biosci Bioeng, 104, 98–103
  • Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. (2004). Anaerobic sludge granulation. Water Res, 38, 1376–89
  • Ishikawa M, Yamamura S, Takamura Y, et al. (2006). Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrogen Energy, 31, 1484–9
  • Ito T, Nakashimada Y, Senba K, et al. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng, 100, 260–5
  • Jekel M, Buhr A, Wilke T, Vorlop KD. (1998). Immobilization of biocatalysts in LentiKats(R). Chem Eng Technol, 21, 275–8
  • Jong E, Higson A, Walsh P, Wellisch M. (2011). Biobased chemicals value added products from biorefineries. IEA Task 42 Bioenergy Report
  • Jun SA, Moon C, Kang CH, et al. (2010). Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol, 161, 491–501
  • Kanekanian A. (2009). Fermentation, microbiology and biotechnology. Int J Dairy Technol, 62, 284–5
  • Kaur G, Srivastava AK, Chand S. (2012). Advances in biotechnological production of 1,3-propanediol. Biochem Eng J, 64, 106–18
  • Khanna S, Goyal A, Moholkar VS. (2013a). Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized Clostridium pasteurianum on silica support. Biotechnol Bioeng, 110, 1637–45
  • Khanna S, Goyal A, Moholkar VS. (2013b). Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel, 112, 557–61
  • Khanna S, Goyal A, Moholkar VS. (2014). Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study. Prep Biochem Biotech, 43, 828–47
  • Kierstan MPJ, Coughan MP. (1985). Immobilization of cells and enzymes by entrapment. In: Woodward J, ed. Immobilization of cells and enzymes – a practical approach. Oxford: IRL Press
  • Konsoula Z, Liakopoulou-Kyriakides M. (2006). Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules. Enzyme Microb Technol, 39, 690–6
  • Kourkoutas Y, Bekatoroua A, Banat IM, et al. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microb, 21, 377–97
  • Krauter H, Willke T, Vorlop K. (2012). Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. New Biotechnol, 29, 211–17
  • Kubiak P, Leja K, Myszka K, et al. (2012). Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem, 47, 1308–19
  • Kumar V, Sankaranarayanan M, Jae KE, et al. (2012). Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol, 96, 373–83
  • Kurian J. (2005). A new polymer platform for the future Sorona® from Corn Derived 1,3-propanediol. J Polym Environ, 13, 159–67
  • Lee KS, Wu JF, Lo YS, et al. (2004). Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng, 87, 648–57
  • Lettinga G, van Velsen AFM, Hobma SW, et al. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng, 22, 699–734
  • Li Q, Zhao X, Chang AK, et al. (2012). Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase for efficient ethanol production. Metab Eng, 14, 1–8
  • Lin EC. (1976). Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol, 30, 535–78
  • Liu L, Wang Z, Yao J, et al. (2005). Investigation on the formation and kinetics of glucose-fed aerobic granular sludge. Enzyme Microb Technol, 36, 487–91
  • Liu Y, Xu HL, Yang SF, Tay JH. (2003). Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res, 37, 661–73
  • Malaoui H, Marczak R. (2000). Purification and characterization of the 1-3-propanediol dehydrogenase of Clostridium butyricum E5. Enzyme Microbial Technol, 27, 399–405
  • O-Thonga S, Prasertsan P, Karakashev D, Angelidaki I. (2008). High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules. Int J Hydrogen Energ, 33, 6498–508
  • Papanikolaou S, Fakas S, Fick M, et al. (2008). Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg, 32, 60–71
  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, et al. (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol, 77, 191–208
  • Petitdemange E, Dürr C, Abbad Andaloussi S, Raval G. (1995). Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol, 15, 498–502
  • Pflugmacher U. (1994). Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol, 41, 786–93
  • Posada JA, Cardona CA, Higuita JC, et al. (2013). Design and economic analysis of the technological scheme for 1,3-propanediol production from raw glycerol. Theor Found Chem Eng, 47, 239–53
  • Quispea CAG, Coronadoc CJR, Carvalho JA. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev, 27, 475–93
  • Reimann A, Biebl H. (1996). Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fed-batch culture: Feeding strategy for glycerol and ammonium. Biotechnol Lett, 18, 827–32
  • Reimann A, Biebl H, Deckwer WD. (1998). Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol, 49, 359–63
  • Reungsang A, Sittijunda S, O-thong S. (2013). Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. Int J Hydrogen Energ, 38, 6970–9
  • Ringel AK, Wilkens E, Hortig D, et al. (2012). An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Appl Microbiol Biotechnol, 93, 1049–56
  • Robinson JR. (1991). Dual hollow fiber bioreactor for cell culture. US5015585
  • Rupp RG. (1985). Use of cellular microencapsulation of yeasts for use in tower fermentor. Biotechnol Lett, 4, 621–6
  • Sattayasamitsathit S, Prasertsan P, Methacanon P. (2011). Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Process Biochem, 46, 608–14
  • Saxena RK, Anand P, Saran S, Isar J. (2009). Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv, 27, 895–913
  • Schlieker M, Vorlop K. (2006). A novel immobilization method for entrapment: LentiKats®. In: Guisan JM, ed. Immobilization of enzymes and cells. Totowa, NJ: Humana Press Inc
  • Schutz H, Radler F. (1984). Anaerobic reduction of glycerol to 1 3 propanediol by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol, 5, 169–78
  • Seyfried M, Lyon D, Rainey FA, Wiegel J. (2002). Caloramator viterbensis sp nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. Int J Syst Evol Microbiol, 52, 1177–84
  • Shafiee S, Topal E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37, 181–9
  • Shi YF, Jin FX, Wu YY. (1997). Microfiltration membrane bioreactor in stirred back flush operation for biotransformation using intact cells. Process Biochem, 32, 387–90
  • Shriver-Lake LC, Gammeter WB, Bang SS, Pazirandeh M. (2002). Covalent binding of genetically engineered microorganisms to porous glass beads. Anal Chim Acta, 470, 71–8
  • Talarico TL, Axelsson LT, Novotny J, et al. (1990). Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol:NAD+ oxidoreductase. Appl Environ Microbiol, 56, 1195–7
  • Tang X, Tan Y, Zhu H, et al. (2009). Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol, 75, 1628–34
  • Tay JH, Tay STL, Liu Y, et al. (2006). Biogranulation technologies for wastewater treatment: microbial granules. Oxford, UK: Elsevier Science
  • Urban RA, Bakshi BR. (2009). 1,3-Propanediol from fossils versus biomass: a life cycle evaluation of emissions and ecological resources. Ind Eng Chem Res, 48, 8068–82
  • Webb C, Dervakos GA. (1996). Studies in viable cell immobilization. AustinTX: R.G. Landes
  • Westman JO, Ylitervo P, Franzén CJ, Taherzadeh MJ. (2012). Effects of encapsulation of microorganisms on product formation during microbial fermentations. Appl Microbiol Biotechnol, 96, 1441–54
  • Wilkens E, Ringel AK, Hortig D, et al. (2012). High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol, 93, 1057–63
  • Willke T, Vorlop K. (2008). Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol, 110, 831–40
  • Wong C, Huang C, Chen W, Chang J. (2011). Converting crude glycerol to 1,3-propandiol using resting and immobilized Klebsiella sp. HE-2 cells. Biochem Eng J, 58-59, 177–83
  • Yazdani SS, Gonzalez R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol, 18, 213–19
  • Zeng A, Biebl H. (2002). Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng/Biotechnol, 74, 239–59
  • Zeng AP. (1996). Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Eng, 14, 169–75
  • Zeng AP, Ross A, Biebl H, et al. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng, 44, 902–11
  • Zhang Z, Show K, Tay J, et al. (2007). Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energ Fuels, 22, 87–92
  • Zhao XG, Bai FW. (2010). Self-immobilized cells and their potentials in the production of bulk products. J Biotechnol, 150, 87
  • Zhao Y, Chen G, Yao S. (2006). Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J, 32, 93–9
  • Zheng ZM, Cheng KK, Hu QL, et al. (2008). Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae. Biochem Eng J, 39, 305–10
  • Zheng ZM, Guo NN, Jian H, et al. (2009). Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumoniae CGMCC 1.6366. Process Biochem, 44, 944–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.