1,630
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Phage lytic proteins: biotechnological applications beyond clinical antimicrobials

, , , , &
Pages 542-552 | Received 28 May 2014, Accepted 01 Nov 2014, Published online: 21 Jan 2015

References

  • Baba T, Schneewind O. (1996). Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J, 15, 4789–97
  • Briers Y, Walmagh M, Grymonprez B, et al. (2014b). Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 58, 3774–84
  • Briers Y, Walmagh M, Van Puyenbroeck V, et al. (2014a). Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio, 5, e01379–14
  • Callewaert L, Walmagh M, Michiels CW, Lavigne R. (2011). Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol, 22, 164–71
  • Carnes AE, Hodgson CP, Luke JM, et al. (2009). Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification. Biotechnol Bioeng, 104, 505–15
  • Celia LK, Nelson D, Kerr DE. (2008). Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol, 130, 107–17
  • Cheng Q, Fischetti VA. (2007). Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Appl Microbiol Biotechnol, 74, 1284–91
  • Cheng Q, Nelson D, Zhu S, Fischetti VA. (2005). Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother, 49, 111–17
  • Daniel A, Euler C, Collin M, et al. (2010). Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 54, 1603–12
  • Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov, 2, 114–22
  • Doehn JM, Fischer K, Reppe K, et al. (2013). Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J Antimicrob Chemother, 68, 2111–17
  • Domenech M, García E, Moscoso M. (2011). In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother, 55, 4144–8
  • Donovan DM, Foster-Frey J, Dong S, et al. (2006a). The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Appl Environm Microbiol, 72, 5108–12
  • Donovan DM, Lardeo M, Foster-Frey J. (2006b). Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett, 265, 133–9
  • During K, Porsch P, Fladung M, Lorz H. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J, 3, 587–98
  • EFSA. (2012). The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA J, 10, 2597
  • Eko FO, Witte A, Huter V, et al. (1999). New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine, 17, 1643–9
  • Entenza JM, Loeffler JM, Grandgirard D, et al. (2005). Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother, 49, 4789–92
  • Farr R, Choi DS, Lee SW. (2013). Phage-based nanomaterials for biomedical applications. Acta Biomater, 10, 1741–50
  • Fenton M, Casey PG, Hill C, et al. (2010). The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. Bioeng Bugs, 1, 404–7
  • Fenton M, Keary R, McAuliffe O, et al. (2013). Bacteriophage-derived peptidase CHAP(K) eliminates and prevents staphylococcal biofilms. Int J Microbiol, 2013, 625341
  • Filatova LY, Becker SC, Donovan DM, et al. (2010). LysK, the enzyme lysing Staphylococcus aureus cells: specific kinetic features and approaches towards stabilization. Biochimie, 92, 507–13
  • Fischetti VA. (2005). Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol, 13, 491–6
  • Fischetti VA. (2008). Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol, 11, 393–400
  • Fujinami Y, Hirai Y, Sakai I, et al. (2007). Sensitive detection of Bacillus anthracis using a binding protein originating from gamma-phage. Microbiol Immunol, 51, 163–9
  • Gaeng S, Scherer S, Neve H, Loessner MJ. (2000). Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol, 66, 2951–8
  • Ganguly J, Low LY, Kamal N, et al. (2013). The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology, 23, 820–32
  • Gao Y, Feng X, Xian M, et al. (2013). Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol, 97, 7121–9
  • García E, García JL, García P, et al. (1988). Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci USA, 85 914–18
  • García P, Martínez B, Obeso JM, Rodríguez A. (2008). Bacteriophages and their application in food safety. Lett Appl Microbiol, 47, 479–85
  • García P, Martínez B, Rodríguez L, Rodríguez A. (2010b). Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol, 141, 151–5
  • García P, Rodríguez L, Rodríguez A, Martínez B. (2010a). Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol, 21, 373–82
  • Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. (2013). Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 57, 2743–50
  • Grandgirard D, Loeffler JM, Fischetti VA, Leib SL. (2008). Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis, 197, 1519–22
  • Gu J, Xu W, Lei L, et al. (2011). LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol, 49, 111–17
  • Gupta R, Prasad Y. (2011). P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr Microbiol, 63, 39–45
  • Gutiérrez D, Delgado S, Vázquez-Sánchez D, et al. (2012). Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol, 78, 8547–54
  • Gutiérrez D, Ruas-Madiedo P, Martínez B, et al. (2013). Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS One, 9, e107307
  • Haidinger W, Mayr UB, Szostak MP, et al. (2003). Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl Environ Microbiol, 69, 6106–13
  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. (2013). Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today, 18, 1144–57
  • Heselpoth RD, Nelson DC. (2012). A new screening method for the directed evolution of thermostable bacteriolytic enzymes. J Vis Exp, 7, pii: 4216
  • Holtje JV, Mirelman D, Sharon N, Schwarz U. (1975). Novel type of murein transglycosylase in Escherichia coli. J Bacteriol, 124, 1067–76
  • Horgan M, O'Flynn G, Garry J, et al. (2009). Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol, 75, 872–4
  • Hu S, Kong J, Kong W, et al. (2010). Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria. Appl Environ Microbiol, 76, 2410–18
  • Jado I, Lopez R, Garcia E, et al. (2003). Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother, 52, 967–73
  • Jawale CV, Lee JH. (2013). Development of a biosafety enhanced and immunogenic Salmonella Enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system. PLoS One, 8, e78193
  • Jun SY, Jung GM, Yoon SJ, et al. (2013). Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents, 41, 156–61
  • Kim WS, Salm H, Geider K. (2004). Expression of bacteriophage phiEa1h lysozyme in Escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology, 150, 2707–14
  • Köller T, Nelson D, Nakata M, et al. (2008). PlyC, a novel bacteriophage lysin for compartment-dependent proteomics of group A streptococci. Proteomics, 8, 140–8
  • Kretzer JW, Lehmann R, Schmelcher M, et al. (2007). Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol, 73, 1992–2000
  • Lewis K. (2006). Persister cells, dormancy and infectious disease. Nat Rev Microbiol, 5, 48–56
  • Loeffler JM, Djurkovic S, Fischetti VA. (2003). Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immunol, 71, 6199–204
  • Loeffler JM, Nelson D, Fischetti VA. (2001). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science, 294, 2170–2
  • Loessner MJ, Kramer K, Ebel F, Scherer S. (2002). C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol, 44, 335–49
  • Loessner MJ, Schneider A, Scherer S. (1995). A new procedure for efficient recovery of DNA, RNA and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol, 61, 1150–2
  • Lood R, Raz A, Molina H, et al. (2014). A highly active and negatively charged Streptococcus pyogenes lysin with a rare d-alanyl-l-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother, 58, 3073–84
  • Low LY, Yang C, Perego M, et al. (2011). Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem, 286, 34391–403
  • Lu JZ, Fujiwara T, Komatsuzawa H, et al. (2006). Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem, 281, 549–58
  • Lukacik P, Barnard TJ, Keller PW, et al. (2012). Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci USA, 109, 9857–62
  • Mayer MJ, Garefalaki V, Spoerl R, et al. (2011). Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J Bacteriol, 193, 5477–86
  • Mayer MJ, Payne J, Gasson MJ, Narbad A. (2010). Genomic sequence and characterization of the virulent bacteriophage phiCTP1from Clostridium tyrobutyricum and heterologous expression of its endolysin. Appl Environ Microbiol, 76, 5415–22
  • Mayr UB, Haller C, Haidinger W, et al. (2005). Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghost protects mice against lethal challenge. Infect Immun, 73, 4810–17
  • McCullers JA, Karlström A, Iverson AR, et al. (2007). Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog, 3, e28
  • McGowan S, Buckle AM, Mitchell MS, et al. (2012). X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci USA, 109, 12752–7
  • Meng X, Shi Y, Ji W, et al. (2011). Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Appl Environ Microbiol, 77, 8272–9
  • Mo KF, Li X, Li H, et al. (2012). Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc, 134, 15556–62
  • Moak M, Molineux IJ. (2004). Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol, 51, 1169–83
  • Munoz E, Ghuysen JM, Heymann H. (1967). Cell walls of Streptococcus pyogenes, type 14. C polysaccharide-peptidoglycan and G polysaccharide-peptidoglycan complexes. Biochemistry, 6, 3659–70
  • Navarre WW, Ton-That H, Faull KF, Schneewind O. (1999). Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. J Biol Chem, 274, 15847–56
  • Nelson D, Loomis L, Fischetti VA. (2001). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA, 98, 4107–12
  • Nelson D, Schuch R, Chahales P, et al. (2006). PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci USA, 103, 10765–70
  • Nelson DC, Schmelcher M, Rodriguez-Ruio L, et al. (2012). Endolysins as antimicrobials. In: Lobocka M, Szybalski W, eds. Advances in virus research: bacteriophage part B. Burlington: Academic Press, 298–363
  • Obeso JM, Martínez B, Rodríguez A, García P. (2008). Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol, 128, 212–18
  • Oechslin F, Daraspe J, Giddey M, et al. (2013). In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia. Antimicrob Agents Chemother, 57, 6276–83
  • O'Flaherty S, Ross RP, Coffey A. (2009). Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev, 33, 801–19
  • Oliveira H, Azeredo J, Lavigne R, Kluskens LD. (2012). Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends Food Sci Technol, 28, 103–15
  • Otto M. (2008). Staphylococcal biofilms. Curr Top Microbiol Immunol, 22, 207–28
  • Panthel K, Jechlinger W, Matis A, et al. (2003). Generation of Helicobacter pylori ghosts by PhiX protein E-mediated inactivation and their evaluation as vaccine candidates. Infect Immunol, 71, 109–16
  • Park T, Struck DK, Dankenbring CA, Young R. (2007). The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J Bacteriol, 189, 9135–9
  • Pastagia M, Euler C, Chahales P, et al. (2011). A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother, 55, 738–44
  • Pastagia M, Schuch R, Fischetti VA, Huang DB. (2013). Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol, 62, 1506–16
  • Paul VD, Rajagopalan SS, Sundarrajan S, et al. (2011). A novel bacteriophage tail-associated muralytic enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol, 11, 226
  • Peng W, Si W, Yin L, et al. (2010). Salmonella enteritidis ghost vaccine induces effective protection against lethal challenge in specific-pathogen-free chicks. Immunobiology, 216, 558–65
  • Pérez-Dorado I, Campillo NE, Monterroso B, et al. (2007). Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1. J Biol Chem, 282, 24990–9
  • Rashel M, Uchiyama J, Ujihara T, et al. (2007). Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis, 196, 1237–47
  • Ribelles P, Benbouziane B, Langella P, et al. (2013). Protection against human papillomavirus type 16-induced tumors in mice using non-genetically modified lactic acid bacteria displaying E7 antigen at its surface. Appl Microbiol Biotechnol, 97, 1231–9
  • Roach DR, Khatibi PA, Bischoff KM, et al. (2013). Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels, 6, 20
  • Rodríguez-Rubio L, Gutiérrez D, Martínez B, et al. (2012b). Lytic activity of LysH5 endolysin secreted by Lactococcus lactis using the secretion signal sequence of bacteriocin Lcn972. Appl Environ Microbiol, 78, 3469–72
  • Rodríguez-Rubio L, Martínez B, Donovan DM, et al. (2013a). Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol, 39, 427–34
  • Rodríguez-Rubio L, Martínez B, Donovan DM, et al. (2013c). Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation. PLoS One, 8, e54828
  • Rodríguez-Rubio L, Martínez B, Rodríguez A, et al. (2012a). Enhanced staphylolitic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 virion associated peptidoglycan hydrolase: fusions, deletions and synergy with LysH5. Appl Environ Microbiol, 78, 2241–8
  • Rodríguez-Rubio L, Martínez B, Rodríguez A, et al. (2013b). The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS One, 8, e64671
  • Sainathrao S, Mohan KV, Atreya C. (2009). Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. BMC Biotechnol, 9, 67
  • Sanz JM, García JL, Laynez J, et al. (1993). Thermal stability and cooperative domains of CPL1 lysozyme and its NH2- and COOH-terminal modules. Dependence on choline binding. J Biol Chem, 268, 6125–30
  • Sass P, Bierbaum G. (2007). Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol, 73, 347–52
  • Schleifer KH, Kandler O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36, 407–77
  • Schmelcher M, Donovan DM, Loessner MJ. (2012a). Bacteriophage endolysins as novel antimicrobials. Future Microbiol, 7, 1–25
  • Schmelcher M, Loessner MJ. (2014). Application of bacteriophages for detection of foodborne pathogens. Bacteriophage, 4, e28137
  • Schmelcher M, Powell AM, Becker SC, et al. (2012b). Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol, 78, 2297–305
  • Schmelcher M, Shabarova T, Eugster MR, et al. (2010). Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol, 76, 5745–56
  • Schuch R, Lee HM, Schneider BC, et al. (2014). Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis, 209, 1469–78
  • Schuch R, Nelson D, Fischetti VA. (2002). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 418, 884–9
  • Schuch R, Pelzek AJ, Raz A, et al. (2013). Use of a bacteriophage lysin to identify a novel target for antimicrobial development. PLoS One, 8, e60754
  • Shen Y, Köller T, Kreikemeyer B, Nelson DC. (2013). Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother, 68, 1818–24
  • Shen Y, Mitchell MS, Donovan DM, Nelson DC. (2012). Phage-based enzybiotics. In: Hyman P, Abedon ST, eds. Bacteriophages in health and disease. Wallingford, UK: CAB International, 217–39
  • Solanki K, Grover N, Downs P, et al. (2013). Enzyme-based listericidal nanocomposites. Sci Rep, 3, 1584
  • Son JS, Lee SJ, Jun SY, et al. (2010). Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol, 86, 1439–49
  • Subramanyam B, Sivaramakrishnan GN, Dusthackeer A, et al. (2011). Phage lysin as a substitute for antibiotics to detect Mycobacterium tuberculosis from sputum samples with the BACTEC MGIT 960 system. Clin Microbiol Infect, 18, 497–501
  • Subramanyam B, Sivaramakrishnan G, Dusthackeer A, Kumar V. (2013). Phage lysin to control the overgrowth of normal flora in processed sputum samples for the rapid and sensitive detection of Mycobacterium tuberculosis by luciferase reporter phage assay. BMC Infect Dis, 13, 44
  • Sulakvelidze A, Alavidze Z, Morris JG. (2001). Bacteriophage therapy. Antimicrob Agents Chemother, 45, 649–59
  • Tolba M, Ahmed MU, Tlili C, et al. (2012). A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst, 137, 5749–56
  • Tu FP, Chu WH, Zhuang XY, Lu CP. (2010). Effect of oral immunization with Aeromonas hydrophila ghosts on protection against experimental fish infection. Lett Appl Microbiol, 50, 13–7
  • Turner MS, Waldherr F, Loessner MJ, Giffard PM. (2007). Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst Appl Microbiol, 30, 58–67
  • Varea J, Monterroso B, Sáiz JL, et al. (2004). Structural and thermodynamic characterization of Pal, a phage natural chimeric lysin active against pneumococci. J Biol Chem, 279, 43697–707
  • Vouillamoz J, Entenza JM, Giddey M, et al. (2013). Bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a mouse model of pneumococcal bacteraemia. Int J Antimicrob Agents, 42, 416–21
  • Wang IN, Smith DL, Young R. (2000). Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol, 54, 799–825
  • Wittmann J, Eichenlaub R, Dreiseikelmann B. (2010). The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains. Microbiology, 156, 2366–73
  • Witzenrath M, Schmeck B, Doehn JM, et al. (2009). Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med, 37, 642–9
  • Yoong P, Schuch R, Nelson D, Fischetti VA. (2006). PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol, 188, 2711–14
  • Zhang H, Bao H, Billington C, et al. (2012). Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol, 31, 133–6
  • Zhang X, Pan Z, Fang Q, et al. (2009). An auto-inducible Escherichia coli lysis system controlled by magnesium. J Microbiol Methods, 79, 199–204
  • Zhu W, Yang G, Zhang Y, et al. (2012). Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. J Biomed Biotechnol, 2012, 760730

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.