622
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Xylitol production in immobilized cultures: a recent review

, , , &
Pages 691-704 | Received 11 Oct 2014, Accepted 22 Dec 2014, Published online: 10 Feb 2015

References

  • Baron GV, Willaert RG, Backer L. (1996). Immobilised cell reactors. In: Baron GV, Willaert RG, Backer L, eds. Immobilised living cell systems: modeling and experimental methods. New York: Wiley, 67–95
  • Béjar P, Casas C, Gódia F, Solá C. (1992). The influence of physical properties on the operation of a three-phase fluidized bed fermentor with yeast cells immobilized in Ca-alginate. Appl Biochem Biotechnol, 34–35, 467–75
  • Bisping B, Rehm HJ. (1986). Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appl Microbiol Biotechnol, 23, 174–9
  • Bony M, Thines-Sempoux D, Barre P, Blondin B. (1997). Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol, 179, 4929–36
  • Branco RF, Santos JC, Murakami LY, et al. (2007). Xylitol production in a bubble column bioreactor: influence of the aeration rate and immobilized system concentration. Process Biochem, 42, 258–62
  • Brányik T, Vicente A, Machado Cruz J, Teixeira J. (2002). Continuous primary beer fermentation with brewing yeast immobilized on spent grains. J Inst Brew, 108, 410–15
  • Brodelius P, Nilsson K. (1983). Permeabilization of immobilized plant cells, resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol, 17, 275–80
  • Burschäpers J, Schustolla D, Schugerl K, et al. (2002). Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis: part 2. Batch and fed-batch operation in bubble column and air-lift tower loop if reactors. Process Biochem, 38, 559–70
  • Canilha L, Carvalho W, Almeida E, Silva JB. (2006). Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agric, 86, 1371–6
  • Cao NJ, Tang R, Gong CS, Chen LF. (1994). The effect of cell density on the production of xylitol from D-xylose by yeast. Appl Biochem Biotechnol, 45–46, 515–19
  • Carvalho W, Canilha L, Silva SS. (2008). Semi-continuous xylose to xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioprocess Biosyst Eng, 31, 493–8
  • Carvalho W, Da Silva SS, Vitolo M, De Mancilha IM. (2000). Use of immobilized Candida cells on xylitol production from sugarcane bagasse. Z Naturforsch C, 55, 213–17
  • Carvalho W, Santos JC, Canilha L, et al. (2004). A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem, 39, 2135–41
  • Carvalho W, Silva SS, Converti A, et al. (2002a). Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Appl Biochem Biotechnol, 98–100, 489–96
  • Carvalho W, Silva SS, Santos JC, Converti A. (2002b). Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol, 32, 553–9
  • Carvalho W, Silva SS, Vitolo M, et al. (2002c). Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C, 57, 109–12
  • Champagne CP, Blahuta N, Brion F, Gagnon C. (2000). A vortex-bowl disk atomizer system for the production of alginate beads in a 1500-liter fermentor. Biotechnol Bioeng, 68, 681–8
  • Chang HN, Moo Young M. (1988). Estimation of oxygen penetration depth in immobilized cells. Appl Microbiol Biotechnol, 29, 107–12
  • Chen C, Dale MC, Okos MR. (1990). Minimal nutritional requirements for immobilized yeast. Biotechnol Bioeng, 36, 993–1001
  • Codex. Available from www.codexalimentarius.net/input/download/standards/9/CXA_006e.pdf [last accessed January 2015]
  • Cruz JM, Domínguez JM, Domínguez H, Parajó JC. (2000). Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolyzates. Biotechnol Lett, 22, 605–10
  • Da Cunha MAA, Converti A, Santos JC, et al. (2009). PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol, 157, 527–37
  • Da Cunha MAA, Converti A, Santos JC, Silva SS. (2006). Yeast immobilization in LentiKats®: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol, 22, 65–72
  • Da Cunha MAA, Rodrigues RCB, Santos JC, et al. (2007). Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel. Curr Microbiol, 54, 91–6
  • da Silva SS, Afschar AS. (1994). Microbial production of xylitol from D-xylose using Candida tropicalis. Bioprocess Eng, 11, 129–34
  • Dale MC, Eagger A, Okos MR. (1994). Osmotic inhibition of free and immobilized Kluveryomyces marxianus anaerobic growth and ethanol productivity in whey permeate concentrate. Process Biochem, 29, 535–44
  • Demuyakor B, Ohta Y. (1992). Promotive action of ceramics on yeast-ethanol production, and its relationship to pH, glycerol and alcohol dehydrogenase activity. Appl Microbiol Biotechnol, 36, 717–21
  • Ding XH, Xia LM. (2006). Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Appl Biochem Biotechnol, 133, 263–70
  • Domingues L, Lima N, Teixeira JA. (2005). Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochem, 40, 1151–4
  • Domínguez JM, Cao N, Gong CS, Tsao GT. (2000). Ethanol production from xylose with the yeast Pichia stipitis and simultaneous product recovery by gas stripping using a gas-lift loop fermentor with attached side-arm (GLSA). Biotechnol Bioeng, 67, 336–43
  • Domínguez JM, Cruz JM, Roca E, et al. (1999). Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells. Appl Biochem Biotechnol, 81, 119–30
  • Domínguez JM. (1998). Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol Lett, 20, 53–6
  • Doran PM, Bailey JE. (1986). Effect of immobilization on growth fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng, 28, 73–87
  • Dos Santos VAPM, Vasilevska T, Kajuk B, et al. (1993). Production and characterization of double-layer beads for co-immobilization of microbial cells. Biotechnol Ann Rev, 3, 227–44
  • Freeman A, Lilly MD. (1998). Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb Technol, 23, 335–45
  • Furlan SA, Delia-Dupuy ML, Strehaiano P. (1997). Xylitol production in repeated fed batch cultivation. World J Microbiol Biotechnol, 13, 591–2
  • Gabardo S, Rech R, Ayub MAZ. (2012). Performance of different immobilized-cell systems to efficiently produce ethanol from whey: fluidized batch, packed-bed and fluidized continuous bioreactors. J Chem Biotechnol, 87, 1194–201
  • García JF, Sánchez S, Bravo V, et al. (2011). Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung, 65, 59–65
  • Göksungur Y, Gündüz M, Harsa Ş. (2005). Optimization of lactic acid production from whey by L. casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. J Chem Technol Biotechnol, 80, 1282–90
  • Hari PR, Chandy T, Sharma CP. (1996). Chitosan/calcium-alginate beads for oral delivery of insulin. J Appl Polym Sci, 59, 1795–801
  • Hinfray C, Jouenne T, Mignot L, Junter GA. (1995). Influence of the oxygenation level on D xylose fermentation by free and agar-entrapped cultures of Candida shehatae. Appl Microbiol Biotechnol, 42, 682–7
  • Horitsu H, Yahashi Y, Takamizawa K, et al. (1992). Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate. Biotechnol Bioeng, 40, 1085–91
  • Hsu CH, Chu YE, Argin-Soyal S, et al. (2004). Effects of surface characteristics and xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices. J Food Sci, 69, 441–8
  • Huang J, Hooijmans CM, Briasco CA, et al. (1990). Effect of free cell growth parameters on oxygen concentration profiles in gel immobilized recombinant Escherichia coli. Appl Microbiol Biot, 33, 619–23
  • Huang Y, Yang ST. (1999). Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous bed bioreactor. Biotechnol Bioeng, 60, 499–507
  • Jamai L, Sendide K, Ettayebi K, et al. (2001). Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiol Lett, 204, 375–9
  • Jin YL, Speers RA. (1988). Flocculation of Saccharomyces cerevisiae. Food Res Int, 31, 421–40
  • Karel SF, Libicki SB, Robertson CR. (1985). The immobilization of whole cells: engineering principles. Chem Eng Sci, 40, 1321–54
  • Kilonzo P, Margaritis MA, Bergougnou MA. (2009). Air-lift driven fibrous bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cell. J Biotechnol, 143, 60–8
  • Kobayashi O, Hayashi N, Kuroki R, Sone H. (1998). Region of Flo1 proteins responsible for sugar recognition. J Bacteriol, 180, 6503–10
  • Kourkoutas Y, Bekatorou A, Banat IM, et al. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol, 21, 377–97
  • Lebeau T, Jouenne T, Junter GA. (1998). Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microb Technol, 22, 434–8
  • Lennartsson PR, Niklasson C, Taherzadeh MJ. (2011). A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with Zygomycetes in an air-lift reactor. Bioresource Technol, 102, 4425–32
  • Lewis VP, Yang ST. (1992). Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed bed-bioreactor. Biotechnol Bioeng, 40, 465–74
  • Li M, Meng X, Diao E, Du F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Biotechnol, 87, 387–92
  • Liaw WC, Chen CS, Chang WS, Chen KP. (2008). Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng, 105, 97–105
  • Liouni M, Drichoutis P, Nerantzis ET. (2008). Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J Microbiol Biotechnol, 24, 281–8
  • Liu J, Lin L, Pang C, et al. (2009). Poplar woodchip as a biorefinery feedstock-prehydrolysis with formic/acetic acid/water system, xylitol production from hydrolysate and kraft pulping of residual woodchips. J Biobased Mater Bioenergy, 3, 37–45
  • Ma T, Yang ST, Kniss DA. (1999). Development of an in vitro human placenta model by cultivation of human trophoblasts in a fiber based bioreactor system. Tissue Eng, 5, 91–102
  • Margaritis A, Merchant FJA. (1984). Advances in ethanol production using immobilized cell systems. Crit Rev Biotechnol, 2, 339–93
  • Martínez EA, Silva SS, Felipe MGA. (2000). Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol, 84–86, 633–41
  • Mattiasson B, Larsson M, Hahn-Haegerdal B. (1984). Metabolic behavior of immobilized cells effects of some microenvironmental factors. Ann NY Acad Sci, 434, 475–8
  • Melo JS, Souza DSF. (1999). Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: application in the continuous inversion of concentrated sucrose syrups. World J Microb Biot, 15(1), 23–7
  • Misra S, Raghuwanshi S, Saxena RK. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym, 92, 1596–601
  • Mollah AH, Stuckey DC. (1993). Maximizing the production of acetone-butanol in an alginate bead fluidized bed reactor using Clostridium acetobutylicum. J Chem Technol Biotechnol, 56, 83–9
  • Muller W, Winnefeld A, Kohls O, et al. (1994). Real and pseudo oxygen gradients in Ca-alginate beads monitored during polarographic PO2-measurements using Pt-needle microelectrodes. Biotechnol Bioeng, 44, 617–25
  • Murata Y, Maeda T, Miyamoto E, Kawashima S. (1993). Preparation of chitosan-reinforced alginate gel beads: effects of chitosan on gel matrix erosion. Int J Pharm, 96, 139–45
  • Mussatto SI, Roberto IC. (2003). Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol, 95, 331–7
  • Mussatto SI. (2012). Application of xylitol in food formulations and benefits for health. In: da Silva SS, Chandel AK, eds. D-Xylitol. Berlin/Germany: Springer-Verlag, 309–23
  • Myers KJ, Reeder MF, Fasano JB. (2002). Optimize mixing by using the proper baffles. CEP Magazine, February, 42–7
  • Nedovic VA, Cukalovic IL, Bezbradica D, et al. (2005). New porous matrices and procedures for yeast cell immobilization for primary beer fermentation. In: Proceedings of the 30th European Brewery Convention, Prague, 401–13
  • Nguyen VT, Shieh WK. (1993). Continuous ethanol fermentation using immobilized in sintered glass. Appl Microbiol Biotechnol, 55, 339–46
  • Nigam P, Singh D. (1995). Processes for fermentative production of xylitol-a sugar substitute. Process Biochem, 30, 117–24
  • Norton S, D’Amore T. (1994). Physiological effects of yeast cell immobilization: applications for brewing. Enzyme Microb Technol, 16, 365–75
  • Oh DK, Kim SY. (1997). Xylitol production from xylose by Candida tropicalis DS-72. Korean J Appl Microbiol Biotechnol, 25, 311–16
  • Oh DK, Kim SY. (1998). Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol, 50, 419–25
  • Oliveira R. (1997). Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci, 14, 316–22
  • Parajó JC, Domínguez H, Domínguez JM. (1996). Production of xylitol from concentrated wood hydrolyzates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol Lett, 18, 593–8
  • Park JK, Chang HN. (2000). Microencapsulation of microbial cells. Biotechnol Adv, 18, 303–19
  • Park S, Stephanopoulos G. (1993). Packed bed bioreactor with porous ceramic beads for animal cell culture. Biotechnol Bioeng, 13, 195–253
  • Pérez-Bibbins B, De Souza Oliveira RP, Torrado A, et al. (2014). Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads. Appl Microbiol Biotechnol, 98, 151–161
  • Pérez-Bibbins B, Salgado JM, Torrado A, et al. (2013). Culture parameters affecting xylitol production by Debaryomyces hansenii immobilized in alginate beads. Process Biochem, 48, 387–97
  • Prakash G, Varma AJ, Prabhune A, et al. (2011). Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technol, 102, 3304–8
  • Reisman HB. (1993). Problems in scale-up of biotechnology production process. Crit Rev Biotechnol, 13, 195–253
  • Roble ND, Ogbonna JC, Tanaka H. (2003). A novel circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol. Appl Microbiol Biotechnol, 60, 671–8
  • Roca E, Flores J, Núñez MJ, Lema JM. (1996a). Ethanolic fermentation by immobilized Saccharomyces cerevisiae in a semipilot pulsing packed-bed bioreactor. Enzyme Microb Technol, 19, 132–9
  • Roca E, Meinander N, Hahn-Hägerdal B. (1996b). Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng, 51, 317–26
  • Rodrigues DCGA, Silva SS, Felipe MGA. (1998a). Using response-surface methodology to evaluate xylitol production by Candida guilliermondii by fed-batch process with exponential feeding rate. J Biotechnol, 62, 73–7
  • Rodrigues DCGA, Silva SS, Prata AMR, Felipe MDGA. (1998b). Biotechnological production of xylitol from agroindustrial residues: evaluation of bioprocesses. Appl Biochem Biotechnol, 70–72, 869–75
  • Saha BC. (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30, 279–91
  • Salgado JM, Converti A, Domínguez JM. (2013). D-Xylitol. In: Salgado JM, Converti A, Domínguez JM, eds. Fermentation strategies explored for xylitol production. Berlin/Heidelberg: Springer-Verlag, 61–192
  • Sampermans S, Mortier J, Soares EV. (2005). Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol, 98, 525–31
  • Santos DT, Sarrouh BF, Rivaldi JD, et al. (2008). Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J Food Eng, 86, 542–8
  • Santos JC, Carvalho W, Silva SS, Converti A. (2003). Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flow rate. Biotechnol Prog, 19, 1210–15
  • Santos JC, Converti A, Carvalho W, et al. (2005a). Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized cell fluidized bed reactor. Process Biochem, 40, 113–18
  • Santos JC, Mussatto SI, da Cunha MAA, Silva SS. (2005b). Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Biotechnol Prog, 21, 1639–43
  • Santos JC, Pinto IRG, Carvalho W, et al. (2005d). Sugarcane bagasse as raw material and immobilization support for xylitol production. Appl Biochem Biotechnol, 122, 673–83
  • Santos JC, Silva SS, Mussatto SI, et al. (2005c). Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol, 21, 531–5
  • Sarrouh B, da Silva SS. (2013). Repeated batch cell-immobilized system for the biotechnological production of Xylitol as a renewable green sweetener. Appl Biochem Biotechnol, 169, 2101–10
  • Sarrouh BF, da Silva SS. (2008). Evaluation of the performance of a three phase fluidized bed reactor with immobilized yeast cells for the biotechnological production of xylitol. Int J Chem React Eng, 6, 1–15
  • Schuler ML. (1985). Immobilized whole cell bioreactors: potential tool for directing cellular metabolism. World Biotechnol Rep, 2, 231–9
  • Shene C, Andrews BA, Asenjo JA. (2000). Effect of the growth conditions on the synthesis of a recombinant β-1,4-endoglucanase in continuous and fed-batch culture. Enzyme Microb Technol, 24, 247–54
  • Shinonaga MA, Kawamua Y, Yamane T. (1992). Immobilization of yeast cells with cross-linked chitosan beads. J Ferment Bioeng, 74, 90–4
  • Shirai Y, Hashimoto K, Yamaji H, Kawahara H. (1988). Oxygen uptake rate of immobilized growing hybridoma cells. Appl Microbiol Biot, 29, 113–18
  • Silva CJSM, Mussatto SI, Roberto IC. (2006). Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng, 75, 115–9
  • Silva JA, Macedo GP, Rodrigues DS, et al. (2012). Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J, 60, 16–24
  • Silva SS, Mussatto SI, Santos JC, et al. (2007). Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotech, 141, 215–27
  • Silva SS, Santos JC, Carvalho W, et al. (2003). Use of a fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem, 38, 903–7
  • Sirisansaneeyakul S, Chainoy R, Vanichsriratana W, et al. (2009). Xylitol production by liquid emulsion membrane encapsulated yeast cells. J Chem Technol Biotechnol, 84, 1218–28
  • Sirisansaneeyakul S, Wannawilai S, Chisti Y. (2013). Repeated fed-batch production of xylitol by Candida magnoliae TISTR 5663. J Chem Technol Biotechnol, 88, 1121–9
  • Sivasubramanian V, NaveenPrasad BS, Velan M. (2008). Mass transfer studies in an external loop airlift bioreactor for wastewater treatment. International Conference on Waste Engineering and Management – ICWEM 2008, Hong Kong SAR
  • Soleimani M, Tabil L. (2014). Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J, 82, 166–73
  • Stewart GG, Russell I. (1986). One hundred years of yeast research and development in the brewing industry. J Inst Brew, 92, 537–58
  • Takahashi T, Takayama K, Machida Y, Nagai T. (1990). Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm, 61, 35–41
  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW. (1996). Fed-batch culture for xylitol production by Candida boidinii. Process Biochem, 31, 265–70
  • Verbelen PJ, De Schutter DP, Delvaux F, et al. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett, 28, 1515–25
  • Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR. (2003). Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol, 61, 197–205
  • Vijayalakshmi M, Marcipar A, Segard E, Broun GB. (1979). Matrix bound transition metal for continuous fermentation tower packing. Ann NY Acad Sci, 326, 249–54
  • Vunjak-Novakovic G, Kim Y, Wu X, et al. (2005). Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Ind Eng Chem Res, 44, 6154–63
  • Wang L, Wu D, Tang P, et al. (2012). Xylitol production from corn cob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohydr Polym, 90, 1106–13
  • Webb C, Fukuda H, Alkinson B. (1986). The production of cellulose in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol Bioeng, 28, 41–50
  • Wen-Tao Q, Wei-Ting Y, Yu-Bing X, Xiaojun M. (2005). Optimization of Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule. Biochem Eng J, 25, 151–7
  • Winkelhausen E, Kuzmanova S. (1998). Microbial conversion of D-xylose to xylitol. J Ferment Bioeng, 86, 1–14
  • Winkelhausen E, Jovanovic-Malinovska R, Kuzmanova S, et al. (2008). Hydrogels based on U.V.-crosslinked poly(ethylene oxide) – matrices for immobilization of Candida boidinii cells for xylitol production. World J Microb Biotechnol, 24, 2035–43
  • Xu TJ, Zhao XQ, Bai FW. (2005). Continuous ethanol production using self-flocculating yeast in a cascade of fermenters. Enzyme Microb Technol, 37, 634–40
  • Yahashi Y, Hatsu M, Horitsu H, et al. (1996). D-glucose feeding for improvement of xylitol productivity from D-xylose using Candida tropicalis immobilized on a nonwoven fabric. Biotechnol Lett, 18, 1395–400
  • Zhang J, Geng A, Yao C, et al. (2012). Xylitol production from d-xylose and horticultural waste hemicellulosic by a new isolate of Candida athensensis SB18. Bioresource Technol, 105, 134–41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.