451
Views
14
CrossRef citations to date
0
Altmetric
Review Article

The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases

, , , &
Pages 777-787 | Received 13 Sep 2014, Accepted 11 Feb 2015, Published online: 20 Jul 2015

References

  • Abboud Y, Eddahbi A, El Bouari A, et al. (2013). Microwave-assisted approach for rapid and green phytosynthesis of silver nanoparticles using aqueous onion (Allium cepa) extract and their antibacterial activity. J Nanostruct Chem, 3, 84. doi:10.1186/2193-8865-3-84
  • Ahmad MZ, Akhter S, Jain GK, et al. (2010). Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv, 7, 927–42
  • Ahmad Z, Pandey R, Sharma S, Khuller GK. (2006). Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci, 48, 171–6
  • Ahn S, Lee I-H, Kang S, et al. (2014). Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv Healthcare Mater, 3, 1194–9
  • Alving CR, Steck EA, Hanson WL, et al. (1978). Improved therapy of experimental leishmaniasis by use of a liposome-encapsulated antimonial drug. Life Sci, 22, 1021–6
  • Ashiq MG, Saeed MA, Tahir BA, et al. (2013). Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles. Chin J Cancer Res, 25, 756–61
  • Ayyub P, Chandra R, Taneja P, et al. (2001). Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl Phys A, 73, 67–73
  • Azar DT. (2006). Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc, 104, 264–302
  • Baeck S-H, Jaramillo TF, Stucky GD, McFarland EW. (2003) Synthesis of tungsten oxide on copper surfaces by electroless deposition. Chem Mater, 15, 3411–13
  • Barabino S, Dana MR. (2007). Dry eye syndromes. Chem Immunol Allergy, 92, 176–84
  • Barraud L, Merle P, Soma E, et al. (2005). Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol, 42, 736–43
  • Bawaskar M, Gaikwad S, Ingle A, et al. (2010). A New report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci, 6, 376–80
  • Berry CC, Curtis ASG. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys, 36, R198
  • Berry CC, de la Fuente JM, Mullin M, et al. (2007). Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nanobiosci, 6, 262–9
  • Bharde AA. (2007). Microbial synthesis of metal oxide, metal sulfide and metal nanoparticles. PhD, University of Pune
  • Bhowmick T, Suresh A, Kane S, et al. (2009). Physicochemical characterization of an Indian traditional medicine, Jasada Bhasma: detection of nanoparticles containing non-stoichiometric zinc oxide. J Nanopart Res, 11, 655–64
  • Birla SS, Tiwari VV, Gade AK, et al. (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol, 48, 173–9
  • Bonde SR, Rathod DP, Ingle AP, et al. (2012). Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Methods, 1, 25–36
  • Bourne RR, Stevens GA, White RA, et al. (2013). Vision loss expert group. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health, 1, e339–49
  • Brewer E, Coleman J, Lowman A. (2011). Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater, 2011, 1–10
  • Buzea C, Pacheco I, Robbie K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, MR17–71
  • Carroll RT, Bhatia D, Geldenhuys W, et al. (2010). Brain-targeted delivery of tempol-loaded nanoparticles for neurological disorders. J Drug Target, 18, 665–74
  • Charles HFP, Denise L, Detlef B. (2008). Zinc oxide nanoparticle dispersion as unique additives for coatings. Vol. 5. Blue Bell, ETATS-UNIS: Federation of Societies for Coating Technology, 11
  • Chauhan A, Zubair S, Tufail S, et al. (2011). Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed, 6, 2305–19
  • Chereddy KK, Coco R, Memvanga PB, et al. (2013). Combined effect of PLGA and curcumin on wound healing activity. J Control Release, 171, 208–15
  • Contreras-Ruiz L, Zorzi GK, Hileeto D, et al. (2013). A nanomedicine to treat ocular surface inflammation: performance on an experimental dry eye murine model. Gene Ther, 20, 467–77
  • Corot C, Robert P, Idee JM, Port M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev, 58, 1471–504
  • Dar MA, Ingle A, Rai M. (2013). Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9, 105–10
  • Das S, Suresh PK. (2011). Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine, 7, 242–7
  • Date AA, Joshi MD, Patravale VB. (2007). Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev, 59, 505–21
  • Dave PN, Chopda LV. (2014). Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol, 2014, Article ID 398569, 14 pages
  • Desai VSK, Kowshik M. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol gel method. Res J Microbiol, 4, 97–103
  • Devaraj NK, Keliher EJ, Thurber GM, et al. (2009). 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem, 20, 397–401
  • DEWS. (2007). The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul Surf, 5, 75–92
  • Diao M, Yao M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Res, 43, 5243–51
  • Duran N, Marcato PD, De Souza GIH, et al. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol, 3, 203--8
  • Eid K, Eldesouky A, Fahmy A, et al. (2013). Calcium phosphate scaffold loaded with platinum nanoparticles for bone allograft. Am J Biomed Sci, 5, 242–9
  • El-Sayed IH, Huang X, El-Sayed MA. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett, 5, 829–34
  • Fatemeh DR, Ebrahimi Shahmabadi H, Abedi A, et al. (2014). Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J Clin Biochem, 29, 333–8
  • Freeman AI, Halladay LJ, Cripps P. (2012). The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J, 192, 489–93
  • Fujita Y, Taguchi H. (2011). Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J, 5, 48. doi:10.1186/1752-153X-5-48
  • Gade A, Bonde P, Ingle A, et al. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy. 2, 243–7
  • Gaikwad S, Ingle A, Gade A, et al. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed, 8, 4303–14
  • Gajbhiye M, Kesharwani J, Ingle A, et al. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382–6
  • Gajendiran M, Yousuf SMJ, Elangovan V, Balasubramanian S. (2014). Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. J Mater Chem B, 2, 418–27
  • Gangadharan D, Harshvardan K, Gnanasekar G, et al. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Res, 44, 5481–7
  • Gayton JL. (2009). Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol, 3, 405–12
  • Godin B, Sakamoto JH, Serda RE, et al. (2010). Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci, 31, 199–205
  • Gong P, Li H, He X, et al. (2007). Preparation and antibacterial activity of Fe3O4 @Ag nanoparticles. Nanotechnology 18, 285604
  • Gottesman R, Shukla S, Perkas N, et al. (2011). Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27, 720–6
  • Gratieri T, Gelfuso GM, de Freitas O, et al. (2011). Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm, 79, 320–7
  • Gratieri T, Gelfuso GM, Rocha EM, et al. (2010). A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm, 75, 186–93
  • Gu H, Ho P, Tong E, et al. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett, 3, 1261–3
  • Guo D, Zhu L, Huang Z, et al. (2013). Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34, 7884--94
  • Guo L, Huang Q, Li XY, Yang S. (2001). Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys, 3, 1661–5
  • Gupta A, Bonde SR, Gaikwad S, et al. (2014). Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol, 8, 172–8
  • Gupta AK, Gupta M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021
  • Gurunathan S, Han JW, Eppakayala V, et al. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int, 2013, 535796
  • Gutierrez-Wing C, Velazquez-Salazar JJ, Jose-Yacaman M. (2012). Procedures for the synthesis and capping of metal nanoparticles. Methods Mol Biol, 906, 3–19
  • Hei H, Wang R, Liu X, et al. (2012). Controlled synthesis and characterization of nobel metal nanoparticles. Soft Nanosci Lett, 2, 34--40
  • Horikoshi S, Serpone N. (2013). Introduction to nanoparticles. Microwaves in nanoparticle synthesis. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim
  • Hoshika S, Nagano F, Tanaka T, et al. (2010). Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent Mater J, 29, 682–9
  • Hussain MM, Samir TM, Azzazy HM. (2013). Unmodified gold nanoparticles for direct and rapid detection of Mycobacterium tuberculosis complex. Clin Biochem, 46, 633–7
  • Hwang S, Nam J, Song J, et al. (2014). A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy. New J Chem, 38, 918–22
  • Ingle A, Gade A, Pierrat S, et al. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci, 4, 141–4
  • Ingle A, Rai M, Gade A, Bawaskar M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res, 11, 2079–85
  • Jasuja K, Linn J, Melton S, Berry V. (2010). Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and raman properties. J Phys Chem Lett, 1, 1853–60
  • Ji T, Rai P, Jung S, Varadan VK. (2008). In vitro evaluation of flexible pH and potassium ion-sensitive organic field effect transistor sensors. Appl Phys Lett, 92, 233304
  • Jimenez JL, Clemente MI, Weber ND, et al. (2010). Carbosilane dendrimers to transfect human astrocytes with small interfering RNA targeting human immunodeficiency virus. BioDrugs 24, 331–43
  • John AE, Lukacs NW, Berlin AA, et al. (2003). Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease. FASEB J, 17, 2296–8
  • Jones N, Ray B, Ranjit KT, Manna AC. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett, 279, 71–6
  • Joshi PBS, Gaikwad S, Gade A, et al. (2013). Biofabrication of silver nanoparticles by three fungi and its activity against human pathogenic bacteria and a dermatophytic fungus. J Bionanosci, 7, 378–85
  • Jumblatt MM, McKenzie RW, Steele PS, et al. (2003). MUC7 expression in the human lacrimal gland and conjunctiva. Cornea, 22, 41–5
  • Jung JH, Hwang GB, Lee JE, Bae GN. (2011). Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir, 27, 10256–64
  • Kaittanis C, Santra S, Perez JM. (2009). Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J Am Chem Soc, 131, 12780–91
  • Kalaiselvan V, Rajasekaran A. (2009). Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res, 4, 1523–9
  • Kanwar JR, Sriramoju B, Kanwar RK. (2012). Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomed, 7, 3259–78
  • Kesarkar R, Oza G, Pandey S, et al. (2012). Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotech Res, 2, 276–83
  • Kirui DK, Khalidov I, Wang Y, Batt CA. (2013). Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine, 9, 702–11
  • Kuchler S, Wolf NB, Heilmann S, et al. (2010). 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol, 148, 24–30
  • Kulkarni SS. (2013). Bhasma and nanomedicine. Int Res J Pharma, 4, 10–16
  • Kumar A, Boruah BM, Liang XJ. (2011). Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater, 2011, 22. http://dx.doi.org/10.1155/2011/202187
  • Kumar A, Vemula PK, Ajayan PM, John G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Mater, 7, 236–41
  • Kumar M, Kong X, Behera AK, et al. (2003). Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther, 1, 3. doi: 10.1186/1479-0556-1-3
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol, 8, 1
  • Lee C, Hsiao F-L, Kobayashi T, et al. (2009). A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators. IEEE J Select Top Quant Electron, 15, 1529–36
  • Lee C, Kim JY, Lee WI, et al. (2008a). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol, 42, 4927–33
  • Lee C, Radhakrishnan R, Chen C-C, et al. (2008b). Design and modeling of a nanomechanical sensor using silicon photonic crystals. J Lightwave Technol, 26, 839–46
  • Li L, Wang H, Ong ZY, et al. (2010). Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today, 5, 296–312
  • Liang K, Jiang Z, Ding BQ, et al. (2011). Expression of cell proliferation and apoptosis biomarkers in pterygia and normal conjunctiva. Mol Vis, 17, 1687–93
  • Liu L, Wu J, Geng J, et al. (2013). Geographical prevalence and risk factors for pterygium: a systematic review and meta-analysis. BMJ Open, 3, e003787
  • Madhusudhan A, Reddy GB, Venkatesham M, et al. (2014). Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci, 15, 8216–34
  • Mahajan SD, Aalinkeel R, Law WC, et al. (2012). Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomed, 7, 5301–14
  • Mertzanis P, Abetz L, Rajagopalan K, et al. (2005). The relative burden of dry eye in patients' lives: comparisons to a US normative sample. Invest Ophthalmol Vis Sci, 46, 46–50
  • Miaśkiewicz-Peska E, Łebkowska M. (2011). Effect of antimicrobial air filter treatment on bacterial survival. Fibre Text East Eur, 19, 73–7
  • Michalet X, Pinaud FF, Bentolila LA, et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–44
  • Miljanovic B, Dana R, Sullivan DA, Schaumberg DA. (2007). Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol, 143, 409–15
  • Mishra A, Tripathy SK, Wahab R, et al. (2011). Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl Microbiol Biotechnol, 92, 617–30
  • Moreira A, Lopera S, Ordonez N, Mansano R. (2012). Platinum nanoparticle deposition on polymeric membranes for fuel cell applications. J Phys: Conference Series, 370, doi:10.1088/1742-6596/370/1/012030
  • Motshekga SC, Pillai SK, Ray SS, et al. (2012). Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater, 2012, Article ID 691503, 15 pages, http://dx.doi.org/10.1155/2012/691503
  • Mudgil M, Gupta N, Nagpal M, Pawar P. (2012). Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci, 4, 105–12
  • Murray CB, Kagan C, Bawendi M. (2000). Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci, 30, 545–10
  • Murty BS, Shankar P, Raj B, et al. 2013. The big world of nanomaterials. Textbook of nanoscience and nanotechnology. Berlin, Heidelberg: Springer
  • Nellore J, Pauline C, Amarnath K. (2013). Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6tetrahydropyridine-induced experimental Parkinsonism in Zebrafish. J Neurodegenerative Dis, 2013, Article ID 972391, 8 pages
  • Obreja L, Pricop D, Foca N, Melnig V. (2010). Platinum nanoparticles synthesis by sonoelectrochemical methods. Mater Plastice, 47, 42--47
  • Pandey R, Sharma A, Zahoor A, et al. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother, 52, 981–6
  • Parboosing R, Maguire GE, Govender P, Kruger HG. (2012). Nanotechnology and the treatment of HIV infection. Viruses, 4, 488–20
  • Park S, Chibli H, Wong J, Nadeau JL. (2011). Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates. Nanotechnology, 22, 185101
  • Park YM, Lee SJ, Kim YS, et al. (2013). Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw, 13, 177–83
  • Patel A, Cholkar K, Agrahari V, Mitra AK. (2013). Ocular drug delivery systems: an overview. World J Pharmacol, 2, 47–64
  • Pathak P, Katiyar V, Giri S. (2007). Cancer research-nanoparticles, nanobiosensors and their use in cancer research. J Nanotechnol Online, 14. Available at: http://www.azonano.com/oars.asp, doi: 10.2240/azojono0116
  • Paulsen F, Langer G, Hoffmann W, Berry M. (2004). Human lacrimal gland mucins. Cell Tissue Res, 316, 167–77
  • Paulsen F. (2008). Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol, 41, 21–35
  • Pflugfelder SC. (2008). Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care, 14, S102–6
  • Poon RT, Borys N. (2009). Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother, 10, 333–43
  • Raheman FD, Deshmukh S, Ingle AP, et al. (2011). Silver nanoparticles: novel antimicrobial agent synthesized from a endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.). Nano Biomed Eng, 3, 174–8
  • Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27, 76–83
  • Raut RW, Haroon ASM, Malghe YS, et al. (2013). Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mat Lett, 4, 650–4
  • Sardesai NP, Andreescu D, Andreescu S. (2013). Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J Am Chem Soc, 135, 16770–3
  • Sato Y, Murase K, Kato J, et al. (2008). Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol, 26, 431–42
  • Sawai J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods, 54, 177–82
  • Schaumberg DA, Sullivan DA, Buring JE, Dana MR. (2003). Prevalence of dry eye syndrome among US women. Am J Ophthalmol, 136, 318–26
  • Schrager LK, D'Souza MP. (1998). Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA, 280, 67–71
  • Shen Y, Zhao P, Shao Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater, 188, 46–76
  • Simsek S, Eroglu H, Kurum B, Ulubayram K. (2013). Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J Microencapsul, 30, 10–20
  • Smith L, Kuncic Z, Ostrikov K, Kumar S. (2012). Nanoparticles in cancer imaging and therapy. J Nanomater, 2012, Article ID 891318, 7 pages, http://dx.doi.org/10.1155/2012/891318
  • Soni N, Prakash S. (2012). Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol, 2, 1–7
  • Stern ME, Beuerman RW, Fox RI, et al. (1998). The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea, 17, 584–9
  • Syed A, Ahmad A. (2012). Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces, 97, 27–31
  • Takamiya M, Miyamoto Y, Yamashita T, et al. (2011). Neurological and pathological improvements of cerebral infarction in mice with platinum nanoparticles. J Neurosci Res, 89, 1125–33
  • Tang S, Hewlett I. (2010). Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. J Infect Dis, 201, S59–64
  • Taveira SF, De Santana DC, Araújo LM, et al. (2014). Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. J Biomed Nanotechnol, 10, 1382–90
  • Tian J, Wong KK, Ho CM, et al. (2007). Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2, 129–36
  • Tran N, Mir A, Mallik D, et al. (2010). Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed, 5, 277–83
  • Tripathi A, Wang J, Luck LA, Suni, II. (2007). Nanobiosensor design utilizing a periplasmic E. coli receptor protein immobilized within Au/polycarbonate nanopores. Anal Chem, 79, 1266–70
  • Tshionyi M, Shay E, Lunde E, et al. (2012). Hemangiogenesis and lymphangiogenesis in corneal pathology. Cornea, 31, 74–80
  • Twelker JD, Bailey IL, Mannis MJ, Satariano WA. (2000). Evaluating pterygium severity: a survey of corneal specialists. Cornea, 19, 292–6
  • Vandervoort J, Ludwig A. (2007). Ocular drug delivery: nanomedicine applications. Nanomedicine (Lond), 2, 11–21
  • Vinogradov SV, Batrakova EV, Kabanov AV. (2004). Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem, 15, 50–60
  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. (2009). Chitosan and its role in ocular therapeutics. Mini Rev Med Chem, 9, 1639–47
  • Wang J, Chen J, Ye N, et al. (2012). Absorption, pharmacokinetics and disposition properties of solid lipid nanoparticles (SLNs). Curr Drug Metab, 13, 447–56
  • Xu Q, Kambhampati SP, Kannan RM. (2013). Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol, 20, 26–37
  • Yakub I, Soboyejo W. (2012). Adhesion of E. coli to silver-or copper-coated porous clay ceramic surfaces. J Appl Phys, 111, 124324
  • Yang Z, Zhang Y, Yang Y, et al. (2010). Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine, 6, 427–41
  • Ye T, Yuan K, Zhang W, et al. (2013). Prodrugs incorporated into nanotechnology-based drug delivery systems for possible improvement in bioavailability of ocular drugs delivery. Asian J Pharma Sci, 8, 207–17
  • Yong NL, Ahmad A, Mohammad AW. (2013). Synthesis and characterization of silver oxide nanoparticles by a novel method. Int J Sci Eng Res, 4, 155–8
  • Yoshihara E, Tachibana H, Nakae T. (1987). Trypanocidal activity of the stearylamine-bearing liposome in vitro. Life Sci, 40, 2153–9
  • Zampa MF, Araujo I, Costa V, et al. (2009). Leishmanicidal activity and immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine 5, 352–8
  • Zhang LN, Deng HH, Lin FL, et al. (2014). In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem, 86, 2711–18
  • Zhang XG, Miao J, Li MW, et al. (2008). Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy. J Zhejiang Univ Sci B, 9, 506–10
  • Zheng B, Kong T, Jing X, et al. (2013). Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Colloid Interface Sci, 396, 138–45
  • Zhou W, Wang Y, Jian J, Song S. (2013). Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomed, 8, 3715–28
  • Zimmer A, Kreuter J. (1995). Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Del Rev, 16, 61–73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.