1,045
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Magnetotactic bacteria: nanodrivers of the future

Pages 788-802 | Received 14 May 2014, Accepted 11 Jan 2015, Published online: 13 Aug 2015

References

  • Afkhami F, Taherkhani S, Mohammadi M, Martel S. (2011). Encapsulation of magnetotactic bacteria for targeted and controlled delivery of anticancer agents for tumor therapy. Conf Proc IEEE Eng Med Biol Soc, 6668–71. DOI: 10.1109/IEMBS.2011.6091644
  • Alphandery E, Carvallo C, Menguy N, Chebbi I. (2011a). Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phys Chem C, 115, 11920–4
  • Alphandery E, Faure S, Chebbi I. (2011b). Treatment of cancer or tumor induced by the release of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and submitted to an alternative magnetic field. US Patent No: WO 2011/061259 A1
  • Alphandery E, Faure S, Raison L, et al. (2011c). Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C, 115, 18–22
  • Alphandery E, Faure S, Seksek O, et al. (2011d). Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 5, 6279–96
  • Alphandery E, Guyot F, Chebbi I. (2012). Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharma, 434, 444–52
  • Alphandéry E. (2014). Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol, 2, 1–6
  • Amemiya Y, Tanaka T, Yoza B, Matsunaga T. (2005). Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol, 120, 308–14
  • Andre W, Martel S. (2006). Design of photovoltaic cells to power control electronics embedded in untethered aqueous microrobots propelled by bacteria. Proc Int Conf IEEE Intelligent Robot Syst, 1335–40. DOI: 10.1109/IROS.2006.281918
  • Arakaki A, Hideshima S, Nakagawa T, et al. (2004). Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles. Biotechnol Bioeng, 88, 543–6
  • Arakaki A, Nakazawa H, Nemoto M, et al. (2008). Formation of magnetite by bacteria and its application. J R Soc Interface, 5, 977–99
  • Arakaki A, Takeyama H, Tanaka T, Matsunaga T. (2002). Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1,using magnetic separation. Appl Biochem Biotechnol, 98–100, 833–40
  • Ardelean II, Moisescu C, Popoviciu DR. (2008). Magnetotactic bacteria and their potential for terraformation. In: Seckbach J, Walsh M, eds. Cellular origin and life in extreme habitats and astrobiology from fossils to astrobiology. Vol. 12. Netherlands: Springer, 335–50
  • Bahaj AS, Croudace IW, James PAB, et al. (1998). Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater, 184, 241–4
  • Bahaj AS, Croudace IW, James PAB. (1993a). Heavy metal removal using magnetotactic bacteria. Presented at Second International Symposium on Subsurface Microbiology, 21–24 Sept, Bath, England
  • Bahaj AS, Croudace IW, James PAB. (1994). Treatment of heavy metal contaminants using magnetotactic bacteria. IEEE Trans Magn Joint MMM-Intermag Conf, 4707–9
  • Bahaj AS, James PAB, Ellwood DC, Watson JHP. (1993b). Characterization and growth of magnetotactic bacteria: implications of clean up of environmental pollution. J Appl Phys, 73, 5394
  • Bahaj AS, James PAB. (1993). Magnetotactic bacteria in environmental cleanup. IEE Colloquium Mag, Sept, London, England. Available from: http://eprints.soton.ac.uk/cgi/export/eprint/74808/Text/eps-eprint-74808.txt [Last accessed 22 May 2015]
  • Bahaj AS, James PAB. (1994). Metal uptake and separation using magnetotactic bacteria. IEEE Trans Magn, 30, 4707–9
  • Balkwill DL, Maratea D, Blakemore RP. (1980). Ultrastructure of a magnetic spirillum. J Bacteriol, 141, 1399–408
  • Bazylinski DA, Frankel RB. (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2, 217–30
  • Bazylinski DA, Garratt-Reed A, Frankel RB. (1994). Electronmicroscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Technol, 27, 389–401
  • Bazylinski DA, Schübbe S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol, 62, 21–62
  • Benoit MR, Mayer D, Barak Y, et al. (2009). Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res, 15, 5170–7
  • Blakemore R. (1975). Magnetotactic bacteria. Science, 190, 377–9
  • Blakemore RP, Maratea D, Wolfe RS. (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol, 140, 720–9
  • Bratkovic T, Lunder M, Popovic T, et al. (2005). Affinity selection to papain yields potent peptide inhibitors of cathepsins L, B, H, and K. Biochem Biophys Res Commun, 332, 897–903
  • Cai F, Li J, Sun J, Ji Y. (2011). Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chem Eng J, 175, 70–5
  • Ceyhan B, Alhorn P, Lang C, et al. (2006). Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small, 2, 1251–5
  • Chang SBR, Kirschvink JL. (1989). Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann Rev Earth Planet Sci, 17, 169–95
  • Chen JF, Li Y, Wang ZF, et al. (2009). High-sensitivity detection of fruit tree viruses using bacterial magnetic particles. J Integr Plant Biol, 51, 409–13
  • Chen Y, Kosmas P, Martel S. (2013a). Microwave breast tumor detection and size estimation using contrast-agent-loaded magnetotactic bacteria. Conf Proc IEEE Eng Med Biol Soc, 5481–4
  • Chen Y, Kosmas P, Martel S. (2013b). A feasibility study for microwave breast cancer detection using contrast-agent-loaded bacterial microbots. Int J Antennas Propagation, Article ID 309703, 1–11. DOI: http://dx.doi.org/10.1155/2013/309703
  • Cheng H, Song H, Cheng F. (2012a). Molecular simulation on magnetotactic bacteria’s adsorption in aqueous Cu2+ solution. Int Rev Chem Eng, 4, 369–72
  • Cheng H, Song H, Cheng F. (2012b). The effect of ion charge-mass ratio on adsorption of heavy metals on magnetotactic bacteria. Afr J Microbiol Res, 6, 7564–71
  • Cristina M, Mihaela L, Ignat M, Ardeleam I. (2007). Magnetosomes from magnetotactic bacterium Magnetospirillum gryphiswaldense: synthesis, isolation and possible applications in bio-nanotechnologies. Annal West Univ Timisoara, Series Chem, 16, 217–26
  • Denomme R, Lu Z, Martel S. (2007). A microsensor for the detection of a single pathogenic bacterium using magnetotactic bacteria-based bio-carriers: simulations and preliminary experiments. Conf Proc IEEE Eng Med Soc, 99–102
  • Farina M, Esquivel DMS, Debarros HGPL. (1990). Magnetic iron–sulfur crystals from a magnetotactic microorganism. Nature, 343, 256–8
  • Felfoul O, Mohammadi M, Gaboury L, Martel S. (2011). Tumor targeting by computer controlled guidance of magnetotactic bacteria acting like autonomous microrobots. Conf Proc IEEE Intelligent Robot Syst (IROS), 1304–8. DOI: 10.1109/IROS.2011.6094991
  • Felfoul O, Mohammadi M, Martel S. (2007). Magnetic resonance imaging of Fe3O4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications. Conf Proc IEEE Eng Med Biol Soc, 1463–6
  • Felfoul O, Mokrani N, Mohammadi M, Martel S. (2010). Effect of the chain of magnetosomes embedded in magnetotactic bacteria and their motility on magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc, 4367–70 doi: 10.1109/IEMBS.2010.5627106
  • Fouladi JE, Andre W, Savaria Y, Martel S. (2007a). System design of an integrated measurement electronic subsystem for bacteria detection using an electrode array and MC-1 magnetotactic bacteria. IEEE Int Conf Appl Specific Sys Architect Processor, 38–41. doi: 10.1109/IEMBS.2007.4352237
  • Fouladi JE, Lu Z, Savaria Y, Martel S. (2007b). An integrated biosensor for the detection of bio-entities using magnetotactic bacteria and CMOS technology. Conf Proc IEEE Eng Med Biol Soc, 119–22
  • Funaki M, Sakai H, Matsunaga T. (1989). Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J Geomagn Geoelectr, 41, 77–87
  • Gambhir SS, Benoit M, Matin AC, et al. (2010). Magnetotactic bacteria MRI positive contrast enhancement agent and methods of use. US Patent No: US 2010/0135912 A1
  • Ginet N, Pardoux R, Adryanczyk G, et al. (2011). Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One, 6, e21442
  • Goldhawk DE, Rohani R, Sengupta A, et al. (2012). Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. Wiley Interd Rev Nanomed Nanobiotechnol, 4, 378–88
  • Gommans WM, Haisma HJ, Rots MG. (2005). Engineering zinc finger protein transcription factors: the therapeutic relevance of switching endogenous gene expression on or off at command. J Mol Biol, 354, 507–19
  • Gorby YA, Beveridge TJ, Blakemore RP. (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol, 170, 834–41
  • Grünberg K, Müller EC, Otto A, et al. (2004). Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microb, 70, 1040–50
  • Guo L, Wang QQ, Sun JB, et al. (2006). Application of antibody-labeled magnetosomes in quantitative detection of HBsAg with chemiluminescence-immunoassays. Nanoscience, 11, 55–9
  • Häfeli UO, Pauer GJ. (1999). In vitro and in vivo toxicity of magnetic microspheres. J Magn Magn Mater, 194, 76–82
  • Harasko G, Pfutzner H, Futschik K. (1995). Domain analysis by means of magnetotactic bacteria. IEEET Magm, 31, 938–49
  • Hartung A, Lisy M, Herrmann KH, et al. (2007). Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging. J Magn Magn Mater, 311, 454–9
  • Herborn CU, Papanikolaou N, Reszka R, et al. (2003). Magnetosomes as biological model for iron binding: relaxivity determination with MRI. Rofo, 175, 830–4
  • Hoell A, Wiedenmann A, Heyen U, Schüler D. (2004). Nanostructure and field-induced arrangement of magnetosomes studied by SANSPOL. Physica B, 350, e309–13
  • Hofer U. (2013). A close-up of magnetotactic bacteria. Nat Rev Microbiol, 11, 360. doi:10.1038/nrmicro3043
  • Hopkin M. (2004). Magnet-making bacteria could target tumours. Nature News, doi:10.1038/news040906-11
  • Hu L, Song T, Ma Q, et al. (2010). Bacterial magnetic nanoparticles as peroxidase mimetics and application in immunoassay. AIP Conf Proc, 1311, 369–74
  • Hufton SE, Moerkerk PT, Meulemans EV, et al. (1999). Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Method, 231, 39–51
  • Ignat M, Zarnescu G, Soldan S, et al. (2007). Magneto-mechanic model of the magnetotactic bacteria: applications in the microactuator field. J Optoelectron Adv Mater, 9, 1169–71
  • Iskusnykh I, Popova TN. (2010). The role of magnetosomes in cellular homeostasis disorder and development of pathology. Biomed Khim, 56, 530–9. [Article in Russian]
  • Jevprasesphant R, Penny J, Jalal R, et al. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm, 252, 263–6
  • Jiang Y, Sun J, Wang Y. (2007). Activated sludge cultivated with culture medium of MTB and biosorption of plumbum (II) by MTB. Huaxue Gongye Yu Gongcheng (Tianjin, China), 24, 283–6
  • Katritch V, Abagyan R. (2011). GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol Sci, 32, 637–43
  • Keim CN, Farina M. (2005). Gold and silver trapping by uncultured magnetotactic cocci. Geomicrobiol J, 22, 55–63
  • Khalil ISM, Magdanz V, Sanchez S, et al. (2013a). Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets. Conf Proc IEEE Ann Int Conf EMBS, 5299–302. doi: 10.1109/EMBC.2013.6610745
  • Khalil ISM, Pichek MP, Zondervan L, et al. (2013b). Characterization and control of biological microrobots. In: Desai JP, Dudek G, Khatib O, Kumar V, eds. Experimental robotics, vol. 88. Springer Tracts in Advanced Robotics. Switzerland: Springer Verlag, 617–31
  • Kim JA, Lee HJ, Kang HJ, Park TH. (2009). The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles. Biomed Microdev, 11, 287–96
  • Kishi H, Yamamoto N, Sakuranaga M. (1988a). Single-component magnetic color electrostatographic toner containing iron oxide. Jpn Kokai Tokkyo Koho, Patent No. JP 63-304269 A. [In Japanese]
  • Kishi H, Yamamoto N, Yano T, Sakuranaga M. (1988b). Electric conductive magnetic electrostatographic toner containing magnetic iron oxide. Jpn Kokai Tokkyo Koho, Patent No. JP 63-304270 A. [In Japanese]
  • Kishi H, Yamamoto N, Yano T, Sakuranaga M. (1988c). Two-component electrostatographic color developer. Jpn Kokai Tokkyo Koho, Patent No. JP 63-304271 A. [In Japanese]
  • Kishi H, Yano T, Yamamato N, Sakuranaga M. (1987a). Production of magnetic substance for magnetic toner. Jpn Kokai Tokkyo Koho, Patent No. JP 61-136766 A. [In: Japanese]
  • Kishi H, Yano T, Yamamoto N, Sakuranaga M. (1987b). Preparation of magnetic iron oxide for magnetic toner from magnetotactic Aquaspirillum magnetotacticum. Jpn Kokai Tokkyo Koho, Patent No. JP 62-294089 A. [In Japanese]
  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T. (2004). Magnetic cell separation using binding with protein A expressed on bacterial magnetic particles. Anal Chem, 76, 6207–13
  • Kumar AVS, Kumar PG, Shankar S. (2009). Role of nuclear medicine in evaluation and management of joint diseases. Ind J Rheumatol, 4, 61–8
  • Kumar N, Curtis W, Hahm J. (2005). Laterally aligned, multiwalled carbon nanotube growth using Magnetospirillium magnetotacticum. Appl Phys Lett, 86, 173101
  • Lang C, Schüler D, Faivre D. (2007). Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci, 7, 144–51
  • Lefèvre CT, Abreu F, Lins U, Bazylinski DA. (2011). A bacterial backbone: magnetosomes in magnetotactic bacteria. In: Rai M, Duran N, eds. Metal nanoparticles in microbiology. Berlin: Springer-Verlag, 75–102
  • Li A, Tao T, Zhang H, et al. (2010). Modification of bacterial magnetosomes and application of magnetosome-antibody complex in pathogen detection. Acta Biophys Sin, 26, 680–90
  • Li J, Cai F, Lv H, Sun J. (2013). Selective competitive biosorption of Au(III) and Cu(II) in binary systems by Magnetospirillum gryphiswaldense. Separat Sci Technol, 48, 960–7
  • Lisy MR, Hartung A, Lang C, et al. (2007). Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol, 42, 235–41
  • Liu RT, Liu J, Tang J, et al. (2012). Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci Mater Int, 22, 31–9
  • Liu Y, Xie M, Wang S, et al. (2013). Facile fabrication of high performances MTX nanocomposites with natural biomembrane bacterial nanoparticles using GP. Mater Lett, 100, 248–51
  • Lu Z, Dennome R, Bah S, Martel S. (2007). Toward bacteria detection on chip: a biosensor based on magnetotactic bacteria and impedance spectroscopy. 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), 7–11 Oct, Paris, France
  • Lu Z, Martel S. (2006a). Microfluidic system for assessing the controllability of MC-1 magnetotactic bacteria as carriers in micro-channels. Tech Proc NSTI Nanotech Conf Trade Show, 2, 629–32
  • Lu Z, Martel S. (2006b). Preliminary investigation of bio-carriers using magnetotactic bacteria. Conf Proc IEEE Eng Med Biol Soc, 1, 3415–18
  • Lu Z, Truong OD, André W, Martel S. (2006). Preliminary design of a biosensor based on MC-1 magnetotactic bacteria. Ninth World Congress on Biosensors (Biosensor), May, Toronto, Canada
  • Lunder M. (2005). Comparison of bacterial and phage display peptide libraries in search of target-binding motif. Appl Biochem Biotechnol, 127, 125–31
  • Ma Q, Chen C, Wei S, et al. (2012). Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidic, 6, 024107
  • Maeda Y, Yoshino T, Takahashi M, et al. (2008). Noncovalent immobilization of streptavidin on in vitro- and in vivo-biotinylated bacterial magnetic particles. Appl Environ Microbiol, 74, 5139–45
  • Martel S, Felfoul O, Mathieu JB, et al. (2009a). MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res, 28, 1169–82
  • Martel S, Felfoul O, Mohammadi M, Mathieu JB. (2008a). Interventional procedure based on nanorobots propelled and steered by flagellated magnetotactic bacteria for direct targeting of tumors in the human body. Conf Proc IEEE Eng Med Biol Soc, 2497–500. DOI: 10.1109/IEMBS.2008.4649707
  • Martel S, Felfoul O, Mohammadi M. (2008b). Flagellated bacterial nanorobots for medical interventions in the human body. Conf Proc IEEE Int Biomed Robotic Biomechatronics, 2, 264–9
  • Martel S, Mohammadi M, Felfoul F, et al. (2009b). Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res, 28, 571–82
  • Martel S, Mohammadi M. (2010). Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. Conf Proc IEEE Robot Autom, 500–5. DOI: 10.1109/ROBOT.2010.5509752
  • Martel S, Tremblay C, Ngakeng S, Langlois G. (2006). Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett, 89, 233904–6
  • Martel S. (2006a). Targeted delivery of therapeutic agents with controlled bacterial carriers in the human blood vessels. Bio Micro Nanosys Conf, 1–9. DOI: 10.1109/BMN.2006.330895
  • Martel S. (2006b). Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis. Conf Proc IEEE Eng Med Biol Soc, 1, 3399–402
  • Martel S. (2008). Nanorobots for microfactories to operations in the human body and robots propelled by bacteria. Facta Univ Ser Mech Autom Control Robot, 7, 1–8
  • Martel S. (2010). Microrobotic navigable entities for magnetic resonance targeting. Conf Proc IEEE Eng Med Biol Soc, 1942–5. DOI: 10.1109/IEMBS.2010.5627768
  • Martel S. (2012). Magnetotactic bcateria for microrobotics. In: Kim M, Steager E, Agung J, eds. Microbiorobotics: biologically inspired microscale robotic systems. Oxford: Elsevier, 201–10
  • Martel S. (2014). Towards fully autonomous bacterial microrobots. Experimental robotics. Springer Tracts Adv Robot, 79, 775–84
  • Maruyama K, Takeyama H, Nemoto E, et al. (2004). Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng, 87, 687–94
  • Maruyama K. (2007). Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) using a fully automated system with a nano-scale engineered biomagnetite. Biosens Bioelectron, 22, 2282–8
  • Matsunaga T, Arakaki A, Takahoko M. (2002). Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol Bioeng, 77, 614–18
  • Matsunaga T, Higashi Y, Tsujimura N. (1997). Drug delivery by magnetoliposomes containing bacterial magnetic particles. Cell Eng, 2, 7–11
  • Matsunaga T, Kamiya S. (1987). Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Environ Microbiol, 26, 328–32
  • Matsunaga T, Maeda Y, Yoshino T, et al. (2007a). Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystylene bead composites, ‘Beads on Beads’. Anal Chim Acta, 597, 331–9
  • Matsunaga T, Maruyama K, Takeyama H, Katoh T. (2007b). High-throughput SNP detection using nano-scale engineered biomagnetite. Biosen Bioelectron, 22, 2315–21
  • Matsunaga T, Suzuki T, Tanaka M, Arakaki A. (2007c). Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nanobiotechnology. Trends Biotechnol, 25, 182–188. doi:10.1016/j.tibtech.2007.02.002
  • Matsunaga T, Nakamura N. (1989). Marine magnetotactic bacteria and their application. Bio Industry, 6, 509–15. [Article in Japanese]
  • Matsunaga T, Sakaguchi T, Tadokoro F. (2003). Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta, 475, 75–83
  • Matsunaga T, Tadokorom P, Nakamura N. (1990). Mass culture of magnetic bacteria and their application to flow type immunoassys. IEEE Trans Magn, 26, 1557–9
  • Matsunaga T, Takeyama H, Tanaka T, Yoshino T. (2004). Manufacture of G protein-coupled receptor (GPCR) with magnetic bacteria. Jpn Kokai Tokkyo Koho, No. JP 2004290039A
  • Matsunaga T. (1986). Extraction of magnetic bacteria particles and application to medicine. Nippon Oyo Jiki Gakkaishi, 10, 488–95
  • Matsunaga T. (1987). Immobilization of physiologically active substances on magnetic microparticles Jpn Kokai Tokkyo Koho, Patent No. JP 62061584A
  • McKay DS, Gibson EK, Thomas-Keprta KL, et al. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30
  • Mokrani N, Felfoul O, Afkhami Zarreh F, et al. (2010). Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. Conf Proc IEEE Eng Med Biol Soc, 4371–4. DOI: 10.1109/IEMBS.2010.5627105
  • Munoz-Jimenez A, Clares B, Ruiz MA, Arias JL. (2010). Cancer therapy and diagnosis by magnetosomes. Ars Pharm, 51, 203–7
  • Nakamura N, Burgess JG, Yagiuda K, et al. (1993). Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem, 65, 2036–9
  • Nakamura N, Hashimoto K, Matsunaga T. (1991). Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem, 63, 268–72
  • Nakamura N, Matsunaga T. (1989). Stability of the sensitivity of SnO2-based elements in the field. In: Seiyama T, ed. Chemical sensor technology. vol. 2. Amsterdam: Elsevier, 255–67
  • Nakamura N, Matsunaga T. (1993). Highly sensitive detection of allergen using bacterial magnetic particles. Analyt Chim Acta, 281, 585–9
  • Nakayama H, Arakaki A, Maruyama K, et al. (2003). Single nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng, 84, 96–102
  • Naresh M, Hasija V, Sharma M, Mittal A. (2010). Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria. J Nanosci Nanotechnol, 10, 4135–44
  • Ota H, Takeyama H, Nakayama H, et al. (2003). SNP detection in transforming growth factor-β1 gene using bacterial magnetic particles. Biosen Bioelectron, 18, 683–7
  • Ren M, Wang Y, Li X, Sun J. (2004). Study on magnetotactic bacteria's absorption of chromium (III) in wastewater. J Kunming Univ Sci Technol, 2, 278–81
  • Schüler D, Frankel RB. (1999). Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Environ Microbiol, 52, 464–73
  • Schultheiss D, Schüler D. (2003). Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol, 179, 89–94
  • Sebastian S, Fernandes F, Sanroman L, et al. (2009). Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater, 321, 1533–8
  • Shugen M, Kobayashy S, Yokoshima K. (2002). Control of a multijoint manipulator moray arm. IEEE Trans Mechatronix, 7, 304–7
  • Simmons S, Edwards K. (2007). Geobiology of magnetotactic bacteria. In: Schüler D, ed. Magnetoreception and magnetosomes in bacteria. 3rd ed. Berlin: Springer-Verlag, 77–102
  • Snowball I, Zillén L, Sandgren P. (2002). Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change. Quatern Int, 88, 13–19
  • Sode K, Kudo S, Sakaguchi T, et al. (1993). Application of bacterial magnetic particles for highly selective messenger-RNA recovery system. Biotechnol Tech, 7, 688–94
  • Song H, Chang H, Li X, Cheng F. (2011a). Kinetics and modelling of bio-magnetic separation of Au(III) from wastewater. Adv Mater Res, 233–235, 1031–5
  • Song H, Cheng H, Li X, Cheng F. (2012). Simulation and experimental study on magnetic separation of Au loaded biomass from wastewater. Desalination Water Treat, 44, 205–14
  • Song H, Li X, Cheng H, Cheng F. (2013). Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalination Water Treat, 51, 3864–70
  • Song H, Li X, Jinsheng S, Wu Z. (2006a). Study on adsorption of metal Ions by magnetotactic bacteria. Chem Reagent Eng Technol, 6, 486–91
  • Song H, Li X, Sun J, et al. (2007a). A novel technology for treatment of wastewater containing Cr(III) ions. Huanjing Gongcheng Xuebao, 1, 22–6
  • Song H, Li X, Sun J, Wu Z. (2008a). Treatment of wastewater containing Pd(II) and Al(III) by biosorption-magnetic separation method. Huaxue Gongcheng (Xi'an, China), 36, 5–8
  • Song HP, Cheng HG, Cheng F. (2011b). Simulation on biosorption of Ni2+ by magnetotactic microorganism in aqueous solution. Ion Exchange Adsorp, 5, 392–9
  • Song HP, Li X, Sun J, et al. (2007b). Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic bacteria. Chin J Chem Eng, 15, 847–54
  • Song HP, Li XG, Sun JS, et al. (2008b). Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere, 72, 616–21
  • Song HP, Li XG, Sun JS, Wang YH. (2006b). Heavy metals removal from wastewater by magnetic field-magnetotactic bacteria technology. Annual Meeting on Water Resource Conservation: Purification, Reclamation and Reuse, 16 November. Available at: http://www.nt.ntnu.no/users/skoge/prost/proceedings/aiche-2006/data/papers/P73486.pdf. [Last accessed 23 May 2015]
  • Sugamata Y. (2013). Functional expression of thyroid-stimulating hormone receptor on nano-sized bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Int J Mol Sci, 14, 14426–38
  • Sun CJ, Yin XH, Wei MA, et al. (2010a). Cultivation of magnetotactic bacteria and use for biosorption of heavy and precious metal ions. Microbiology, 3, 394–400
  • Sun J, Li Y, Liang XJ, Wang CW. (2011). Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multi functions. J Nanomaterial, 1–13. Article ID 469031. doi:10.1155/2011/469031
  • Sun J, Yin X, Song H, Sun C. (2009). Method for recovering precious and heavy metal ions from wastewater by coupling biosorption with magnetotactic bacteria and magnetic separation. Faming Zhuanli Shenqing Gongkai Shuomingshu, Patent No. CN 101343102 A
  • Sun JB, Duan JH, Dai SL, et al. (2008). Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng, 101, 1313–20
  • Sun JB, Tang T, Duan J, et al. (2010b). Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 4, 271–83
  • Sun JB. (2007). In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett, 258, 109–17
  • Sun JB. (2009). Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. J Nanosci Nanotechnol, 9, 1881–5
  • Sun X, Wu L, Ji J, et al. (2013). Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosens Bioelectron, 15, 318–23
  • Taherkhani S, Mohammadi M, Daoud J, et al. (2014). Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 8, 5049–60
  • Takahashi M, Yoshino T, Takeyama H, Matsunaga T. (2009). Direct magnetic separation of immune cells from whole blood using bacterial magnetic particles displaying protein G. Biotechnol Prog, 25, 219–26
  • Takeyama H, Yamazawa A, Nakamura C, Matsunaga T. (1995). Application of bacterial magnetic particles as novel DNA carriers for ballistic transformation of a marine cyanobacterium. Biotechnol Tech, 9, 355–60
  • Tanaka M, Kawase M, Tanaka T, Matsunaga T. (2009). Gold biorecovery from plating waste by magnetotactic bacterium, Magnetospirillum magneticum AMB-1. Mater Res Soc Sym Proc, 1169, 15–20
  • Tanaka T, Kokuryu Y, Matsunaga T. (2008). Novel method for selection of antimicrobial peptides from a phage display library by use of bacterial magnetic particles. Appl Environ Microbiol, 74, 7600–6
  • Tanaka T, Matsunaga T. (2001). Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles. Biosens Bioelectron, 16, 1089–94
  • Tanaka T. (2004). Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J Biotechnol, 108, 153–9
  • Tang YS. (2012). Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther, 19, 1187–95
  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, et al. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta, 64, 4049–81
  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, et al. (2001). Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA, 98, 2164–9
  • Timko M, Dzarova A, Kovac J, et al. (2009). Magnetic properties and heating effect in bacterial magnetic nanoparticles. J Magn Magn Mater, 321, 1521–4
  • Tomita-Mitchell A, Muniappan BP, Herrero-Jimenez P, et al. (1998). Single nucleotide polymorphism spectra in newborns and centenarians: identification of genes coding for rise of mortal disease. Gene, 223, 381–91
  • Treiman AH. (1995). A petrographic history of martian meteorite ALH84001: two shocks and an ancient age. Meteoritics, 30, 294–302
  • Vereda F, de Vicente J, Hidalgo-Álvarez R. (2009). Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. Chem Phys Chem, 10, 1165–79
  • Wacker R. (2007). Magneto Immuno-PCR: a novel immunoassay based on biogenic magnetosome nanoparticles. Biochem Biophys Res Commun, 357, 391–6
  • Wagner V, Dullaart A, Bock AK, Zweck A. (2006). The emerging nanomedicine landscape. Nat Biotechnol, 24, 1211–17
  • Wang Y, Guo H, Sun J, et al. (2011). Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense. Desalination, 270, 258–63
  • Wang Y, Sun J. (2005). Biosorption of heavy metal ions by activated sludge cultivated with culture medium of MTB. Huaxue Gongye Yu Gongcheng, 22, 255–8. [Article in Chinese]
  • Wu L, Gao B, Zhang F, et al. (2013). A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta, 106, 360–6
  • Wu Z, Sun J, Song H, Li X. (2006a). Studies on adsorption of palladium (II) by magnetotactic bacteria (MTB). Ion Exchange Adsorption, 22, 385–91
  • Wu Z, Sun J, Song H, Li X. (2006b). Studies on adsorption of silver(I) by magnetotactic bacteria. Proc Int Forum Green Chem Sci Eng Process Syst Eng China, 3, 1288–93
  • Xiang L, Bin W, Huali J, et al. (2007a). Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med, 9, 679–90
  • Xiang L, Wei J, Jianbo S, et al. (2007b). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol, 45, 75–81
  • Xie J, Chen K, Chen X. (2009). Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res, 2, 261–78
  • Xie Q, Matsunaga S, Wen Z, et al. (2006). In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. J Pept Sci, 12, 643–52
  • Xie Y. (2005). The immunoagglutination inspection using antibody-magnetic bionanoparticles complexes. Chin J Biomed Eng, 24, 740–2
  • Yan L, Zhang S, Chen P, et al. (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiol Res, 167, 507–19
  • Yan L. (2012). Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans. Mater Sci Eng C, 32, 1802–7
  • Yang C, Wang Z, Wang JG. (2009). On a new type of magnetotactic bacterium-like micro-robot. Robot, 31, 146–50
  • Yoshino T, Haruko T, Matsunaga T. (2002). Bacterial magnetic particle surface display of G protein-coupled receptors. Nippon Kagakkai Baiotekunoroji Bukai Shinpojiumu Koen Yoshishu, 6, 40. [Article in Japanese]
  • Yoshino T, Hirabe H, Takahashi M, et al. (2008). Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnol Bioeng, 101, 470–7
  • Yoshino T, Maeda Y, Matsunaga T. (2010). Bioengineering of bacterial magnetic particles and their applications in biotechnology. Recent Pat Biotechnol, 4, 214–25
  • Yoshino T, Matsunaga T. (2005). Development of efficient expression system for protein display on bacterial magnetic particles. Biochem Biophys Res Commun, 338, 1678–81
  • Yoshino T, Matsunaga T. (2009). Protein display onto nano-sized bacterial magnetic particles for receptor analysis. Yakugaku Zasshi, 129, 1319–25. [Article in Japanese]
  • Yoshino T, Takahashi M, Takeyama H, et al. (2004). Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol, 70, 2880–5
  • Yoza B, Arakaki A, Matsunaga T. (2003). DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol, 101, 219–28
  • Yoza B, Matsumoto M, Matsunaga T. (2002). DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol, 94, 217–24
  • Zhang KY, Zhu KL, Xiao T, Wu LF. (2009). Magnetotactic bacteria – a natural architecture leading from structure to possible applications. Proc MRS Spring Meeting, 1188, 175–86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.