1,141
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids

&
Pages 803-815 | Received 31 Dec 2014, Accepted 15 Apr 2015, Published online: 03 Jun 2015

References

  • Agard NJ, Prescher JA, Bertozzi CR. (2004). A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 126, 15046–7
  • Agard NJ, Baskin JM, Prescher JA, et al. (2006). A comparative study of bioorthogonal reactions with azides. ACS Chem Biol, 1, 644–8
  • Agarwal P, Kudirka R, Albers AE, et al. (2013a). Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem, 24, 846–51
  • Agarwal P, van der Weijden J, Sletten EM, et al. (2013b). A Pictet-Spengler ligation for protein chemical modification. Proc Natl Acad Sci USA, 110, 46–51
  • Aggarwal RS. (2014). What’s fueling the biotech engine – 2012 to 2013. Nat Biotechnol, 32, 32–9
  • Ai HW, Shen W, Sagi A, et al. (2011). Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem, 12, 1854–7
  • An P, Yu Z, Lin Q. (2013). Design and synthesis of laser-activatable tetrazoles for a fast and fluorogenic red-emitting 1,3-dipolar cycloaddition reaction. Org Lett, 15, 5496–5499.68
  • Axup JY, Bajjuri KM, Ritland M, et al. (2012). Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci USA, 109, 16101–6
  • Banerjee SS, Aher N, Patil R, Khandare J. (2012). Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv, 2012, 103973
  • Bargou R, Leo E, Zugmaier G, et al. (2008). Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science, 321, 974–7
  • Beatty KE, Fisk JD, Smart BP, et al. (2010). Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. Chembiochem, 11, 2092–5.22
  • Besanceney-Webler C, Jiang H, Zheng T, et al. (2011). Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew Chem Int Ed Engl, 50, 8051–6
  • Bianco A, Townsley FM, Greiss S, et al. (2012). Expanding the genetic code of Drosophila melanogaster. Nat Chem Biol, 8, 748–50
  • Borrmann A, Milles S, Plass T, et al. (2012). Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Chembiochem, 13, 2094–9
  • Bowen S, Tare N, Inoue T, et al. (1999). Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol, 27, 425–32
  • Bundy BC, Swartz JR. (2010). Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein-protein click conjugation. Bioconjug Chem, 21, 255–63
  • Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ. (2013). A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol, 31, 621–32
  • Carvalho P, Stanley AM, Rapoport TA. (2010). Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell, 143, 579–91
  • Chan AC, Carter PJ. (2010). Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol, 10, 301–16
  • Chari RV, Miller ML, Widdison WC. (2014). Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl, 53, 3796–827
  • Chatterjee A, Sun SB, Furman JL, et al. (2013). A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry, 52, 1828–37
  • Chen W, Wang D, Dai C, et al. (2012). Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. Chem Commun (Camb), 48, 1736–8
  • Chen S, Fahmi NE, Wang L, et al. (2013). Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids. J Am Chem Soc, 135, 12924–7
  • Chen XH, Xiang Z, Hu YS, et al. (2014). Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors. ACS Chem Biol, 9, 1956–61
  • Chin JW, Martin AB, King DS, et al. (2002). Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci USA, 99, 11020–4
  • Chin JW, Cropp TA, Chu S, et al. (2003). Progress toward an expanded eukaryotic genetic code. Chem Biol, 10, 511–19
  • Chin JW. (2014). Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem, 83, 379–408
  • Cho H, Daniel T, Buechler YJ, et al. (2011). Optimized clinical performance of growth hormone with an expanded genetic code. Proc Natl Acad Sci USA, 108, 9060–5
  • Clark R, Olson K, Fuh G, et al. (1996). Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem, 271, 21969–77
  • Cobo I, Li M, Sumerlin BS, Perrier S. (2014). Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat Mater, 14, 143–59
  • Connor RE, Piatkov K, Varshavsky A, Tirrell DA. (2008). Enzymatic N-terminal addition of noncanonical amino acids to peptides and proteins. Chembiochem, 9, 366–9
  • de Almeida G, Sletten EM, Nakamura H, et al. (2012). Thiacycloalkynes for copper-free click chemistry. Angew Chem Int Ed Engl, 51, 2443–7
  • de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E. (2009). Nonnatural amino acids for site-specific protein conjugation. Bioconjug Chem, 20, 1281–95
  • Deiters A, Cropp TA, Mukherji M, et al. (2003). Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc, 125, 11782–3
  • Deiters A, Cropp TA, Summerer D, et al. (2004). Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett, 14, 5743–5
  • DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. (2013). Industrial use of immobilized enzymes. Chem Soc Rev, 42, 6437–74
  • Dieterich DC, Link AJ, Graumann J, et al. (2006). Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci USA, 103, 9482–7
  • Dirksen A, Dirksen S, Hackeng TM, Dawson PE. (2006a). Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J Am Chem Soc, 128, 15602–3
  • Dirksen A, Hackeng TM, Dawson PE. (2006b). Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed Engl, 45, 7581–4
  • Dommerholt J, Schmidt S, Temming R, et al. (2010). Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Ed Engl, 49, 9422–5
  • Elliott TS, Bianco A, Chin JW. (2014). Genetic code expansion and bioorthogonal labelling enables cell specific proteomics in an animal. Curr Opin Chem Biol, 21, 154–60
  • Elliott TS, Townsley FM, Bianco A, et al. (2014). Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat Biotechnol, 32, 465–72
  • Farrell IS, Toroney R, Hazen JL, et al. (2005). Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat Methods, 2, 377–84
  • Fishburn CS. (2008). The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci, 97, 4167–83
  • Fleissner MR, Brustad EM, Kalai T, et al. (2009). Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci USA, 106, 21637–42
  • Furman JL, Kang M, Choi S, et al. (2014). A genetically encoded aza-Michael acceptor for covalent cross-linking of protein-receptor complexes. J Am Chem Soc, 136, 8411–17
  • Gan SD, Patel KR. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol, 133, e12
  • Ginn C, Khalili H, Lever R, Brocchini S. (2014). PEGylation and its impact on the design of new protein-based medicines. Future Med Chem, 6, 1829–46
  • Goerke AR, Swartz JR. (2009). High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids. Biotechnol Bioeng, 102, 400–16
  • Graziano RF, Guptill P. (2004). Chemical production of bispecific antibodies. Methods Mol Biol, 283, 71–85
  • Greiss S, Chin JW. (2011). Expanding the genetic code of an animal. J Am Chem Soc, 133, 14196–9
  • Grunbeck A, Sakmar TP. (2013). Probing G protein-coupled receptor-ligand interactions with targeted photoactivatable cross-linkers. Biochemistry, 52, 8625–32
  • Guimaraes CP, Witte MD, Theile CS, et al. (2013). Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc, 8, 1787–99
  • Hamblett KJ, Senter PD, Chace DF, et al. (2004). Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res, 10, 7063–70
  • Hatzenpichler R, Scheller S, Tavormina PL, et al. (2014). In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol, 16, 2568–90
  • Haun JB, Devaraj NK, Hilderbrand SA, et al. (2010). Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat Nanotechnol, 5, 660–5
  • Havelund S, Plum A, Ribel U, et al. (2004). The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res, 21, 1498–504
  • Hoesl MG, Budisa N. (2011). In vivo incorporation of multiple noncanonical amino acids into proteins. Angew Chem Int Ed Engl, 50, 2896–902
  • Hoesl MG, Budisa N. (2012). Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol, 23, 751–7
  • Holtsberg FW, Ensor CM, Steiner MR, et al. (2002). Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release, 80, 259–71
  • Hong V, Presolski SI, Ma C, Finn MG. (2009). Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl, 48, 9879–83
  • Hong V, Steinmetz NF, Manchester M, Finn MG. (2010). Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjug Chem, 21, 1912–16
  • Huang Y, Wan W, Russell WK, et al. (2010). Genetic incorporation of an aliphatic keto-containing amino acid into proteins for their site-specific modifications. Bioorg Med Chem Lett, 20, 878–80
  • Hui JZ, Al Zaki A, Cheng Z, et al. (2014). Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles. Small, 10, 3354–63
  • Hutchins BM, Kazane SA, Staflin K, et al. (2011). Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J Mol Biol, 406, 595–603
  • Hutchins BM, Kazane SA, Staflin K, et al. (2012). Selective formation of covalent protein heterodimers with an unnatural amino acid. Chem Biol, 18, 299–303
  • Jewett JC, Sletten EM, Bertozzi CR. (2010). Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc, 132, 3688–90
  • Junutula JR, Raab H, Clark S, et al. (2008). Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 26, 925–32
  • Junutula JR, Flagella KM, Graham RA, et al. (2010). Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res, 16, 4769–78
  • Kalia J, Raines RT. (2008). Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed Engl, 47, 7523–6
  • Kamada H, Tsutsumi Y, Yamamoto Y, et al. (2000). Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res, 60, 6416–20
  • Karver MR, Weissleder R, Hilderbrand SA. (2012). Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. Angew Chem Int Ed Engl, 51, 920–2
  • Kaya E, Vrabel M, Deiml C, et al. (2012). A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed Engl, 51, 4466–9
  • Kazane SA, Axup JY, Kim CH, et al. (2013). Self-assembled antibody multimers through peptide nucleic acid conjugation. J Am Chem Soc, 135, 340–6
  • Kim CH, Axup JY, Dubrovska A, et al. (2012). Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J Am Chem Soc, 134, 9918–21
  • Kim Y, Kim SH, Ferracane D, et al. (2012). Specific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry. Bioconjug Chem, 23, 1891–901
  • Kim J, Seo MH, Lee S, et al. (2013). Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis. Anal Chem, 85, 1468–74
  • Knall AC, Slugovc C. (2013). Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev, 42, 5131–42
  • Knudsen LB, Nielsen PF, Huusfeldt PO, et al. (2000). Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem, 43, 1664–9
  • Kolate A, Baradia D, Patil S, et al. (2014). PEG – a versatile conjugating ligand for drugs and drug delivery systems. J Control Release, 192, 67–81
  • Kularatne SA, Deshmukh V, Ma J, et al. (2014). A CXCR4-targeted site-specific antibody-drug conjugate. Angew Chem Int Ed Engl, 53, 11863–7
  • Kung Sutherland MS, Walter RB, Jeffrey SC, et al. (2013). SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 122, 1455–63
  • Kurra Y, Odoi KA, Lee YJ, et al. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjug Chem, 25, 1730–8
  • Kwon I, Kirshenbaum K, Tirrell DA. (2003). Breaking the degeneracy of the genetic code. J Am Chem Soc, 125, 7512–3
  • Kwon I, Wang P, Tirrell DA. (2006). Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins. J Am Chem Soc, 128, 11778–83
  • Kwon I, Tirrell DA. (2007). Site-specific incorporation of tryptophan analogues into recombinant proteins in bacterial cells. J Am Chem Soc, 129, 10431–7
  • Kwon I, Lim SI. (2013). Non-natural amino acids for protein engineering and new protein chemistries. Macromol Chem Phys, 214, 1295–301
  • Kwon I, Lim SI. (2014). Tailoring the substrate specificity of yeast phenylalanyl-tRNA synthetase toward a phenylalanine analog using multiple-site-specific incorporation. ACS Synth Biol, doi: 10.1021/sb500309r
  • Lane MD, Seelig B. (2004). Advances in the directed evolution of proteins. Curr Opin Chem Biol, 22, 129–36
  • Lang K, Davis L, Torres-Kolbus J, et al. (2012). Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem, 4, 298–304
  • Lang K, Davis L, Wallace S, et al. (2012). Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc, 134, 10317–20
  • Lang K, Chin JW. (2014). Bioorthogonal reactions for labeling proteins. ACS Chem Biol, 9, 16–20
  • Lang K, Chin JW. (2014). Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev, 114, 4764–806
  • Lee HS, Dimla RD, Schultz PG. (2009). Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid. Bioorg Med Chem Lett, 19, 5222–4
  • Lee YJ, Wu B, Raymond JE, et al. (2013). A genetically encoded acrylamide functionality. ACS Chem Biol, 8, 1664–70
  • Lemke EA, Summerer D, Geierstanger BH, et al. (2007). Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol, 3, 769–72
  • Lemke EA. (2011). Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities. Methods Mol Biol, 751, 3–15
  • Li F, Zhang H, Sun Y, et al. (2013). Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed Engl, 52, 9700–4
  • Li Y, Cirino PC. (2014). Recent advances in engineering proteins for biocatalysis. Biotechnol Bioeng, 111, 1273–87
  • Lim RK, Lin Q. (2010). Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. Chem Commun (Camb), 46, 7993–5
  • Lim SI, Mizuta Y, Takasu A, et al. (2013). Site-specific fatty acid-conjugation to prolong protein half-life in vivo. J Control Release, 170, 219–25
  • Lim SI, Mizuta Y, Takasu A, et al. (2014). Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I)-catalyzed azide-alkyne cycloaddition with retained activity. PLoS One, 9, e98403
  • Liu DR, Schultz PG. (1999). Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA, 96, 4780–5
  • Liu W, Brock A, Chen S, Schultz PG. (2007). Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods, 4, 239–44
  • Liu T, Toriyabe Y, Kazak M, Berkman CE. (2008). Pseudoirreversible inhibition of prostate-specific membrane antigen by phosphoramidate peptidomimetics. Biochemistry, 47, 12658–60
  • Liu DS, Tangpeerachaikul A, Selvaraj R, et al. (2012). Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J Am Chem Soc, 134, 792–5
  • Lu H, Wang D, Kazane S, et al. (2013). Site-specific antibody-polymer conjugates for siRNA delivery. J Am Chem Soc, 135, 13885–91
  • Manabe S, Sakamoto K, Nakahara Y, et al. (2002). Preparation of glycosylated amino acid derivatives for glycoprotein synthesis by in vitro translation system. Bioorg Med Chem, 10, 573–81
  • Martin SE, Ganguly T, Munske GR, et al. (2014). Development of inhibitor-directed enzyme prodrug therapy (IDEPT) for prostate cancer. Bioconjug Chem, 25, 1752–60
  • Matsuo T, Hirota S. (2014). Artificial enzymes with protein scaffolds: structural design and modification. Bioorg Med Chem, 22, 5638–56
  • McKay CS, Finn MG. (2014). Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol, 21, 1075–101
  • Milles S, Tyagi S, Banterle N, et al. (2012). Click strategies for single-molecule protein fluorescence. J Am Chem Soc, 134, 5187–95
  • Nairn NW, Shanebeck KD, Wang A, et al. (2012). Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon beta-1b by site-specific PEGylation. Bioconjug Chem, 23, 2087–97
  • Neumann H, Wang K, Davis L, et al. (2010). Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 464, 441–4
  • Nguyen DP, Elliott T, Holt M, et al. (2011). Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J Am Chem Soc, 133, 11418–21
  • Panowksi S, Bhakta S, Raab H, et al. (2014). Site-specific antibody drug conjugates for cancer therapy. MAbs, 6, 34–45
  • Pasut G, Veronese FM. (2009). PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev, 61, 1177–88
  • Pasut G, Veronese FM. (2012). State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release, 161, 461–72
  • Patterson DM, Nazarova LA, Xie B, et al. (2012). Functionalized cyclopropenes as bioorthogonal chemical reporters. J Am Chem Soc, 134, 18638–43
  • Plass T, Milles S, Koehler C, et al. (2012). Amino acids for Diels-Alder reactions in living cells. Angew Chem Int Ed Engl, 51, 4166–70
  • Pollaro L, Heinis C. (2010). Strategies to prolong the plasma residence time of peptide drugs. Med Chem Commun, 1, 319–24
  • Presolski SI, Hong VP, Finn MG. (2011). Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol, 3, 153–62
  • Raliski BK, Howard CA, Young DD. (2014). Site-specific protein immobilization using unnatural amino acids. Bioconjug Chem, 25, 1916–20
  • Rashidian M, Dozier JK, Distefano MD. (2013). Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem, 24, 1277–94
  • Rashidian M, Mahmoodi MM, Shah R, et al. (2013). A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. Bioconjug Chem, 24, 333–42
  • Rath T, Baker K, Dumont JA, et al. (2013). Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol, doi:10.3109/07388551.2013.834293
  • Reihl O, Lederer MO, Schwack W. (2004). Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid. Carbohydr Res, 339, 483–91
  • Rust HL, Subramanian V, West GM, et al. (2014). Using unnatural amino acid mutagenesis to probe the regulation of PRMT1. ACS Chem Biol, 9, 649–55
  • Sachdeva A, Wang K, Elliott T, Chin JW. (2014). Concerted, rapid, quantitative, and site-specific dual labeling of proteins. J Am Chem Soc, 136, 7785–8
  • Schuler B, Hofmann H. (2013). Single-molecule spectroscopy of protein folding dynamics – expanding scope and timescales. Curr Opin Struct Biol, 23, 36–47
  • Seitchik JL, Peeler JC, Taylor MT, et al. (2012). Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc, 134, 2898–901
  • Shechter Y, Sasson K, Lev-Goldman V, et al. (2012). Newly designed modifier prolongs the action of short-lived peptides and proteins by allowing their binding to serum albumin. Bioconjug Chem, 23, 1577–86
  • Shen BQ, Xu K, Liu L, et al. (2012). Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol, 30, 184–9
  • Simon M, Frey R, Zangemeister-Wittke U, Pluckthun A. (2013). Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug Chem, 24, 1955–66
  • Simon M, Stefan N, Borsig L, et al. (2014). Increasing the antitumor effect of an EpCAM-targeting fusion toxin by facile click PEGylation. Mol Cancer Ther, 13, 375–85
  • Sleep D, Cameron J, Evans LR. (2013). Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta, 1830, 5526–34
  • Sletten EM, Bertozzi CR. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl, 48, 6974–98
  • Smith MT, Wu JC, Varner CT, Bundy BC. (2013). Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization. Biotechnol Prog, 29, 247–54
  • Song W, Wang Y, Qu J, et al. (2008). A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew Chem Int Ed Engl, 47, 2832–5
  • Song W, Wang Y, Qu J, Lin Q. (2008). Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J Am Chem Soc, 130, 9654–5
  • Spicer CD, Davis BG. (2014). Selective chemical protein modification. Nat Commun, 5, 4740
  • Steen Redeker E, Ta DT, Cortens D, et al. (2013). Protein engineering for directed immobilization. Bioconjug Chem, 24, 1761–77
  • Stephanopoulos N, Francis MB. (2011). Choosing an effective protein bioconjugation strategy. Nat Chem Biol, 7, 876–84
  • Taira H, Fukushima M, Hohsaka T, Sisido M. (2005). Four-base codon-mediated incorporation of non-natural amino acids into proteins in a eukaryotic cell-free translation system. J Biosci Bioeng, 99, 473–6
  • Talukder P, Chen S, Liu CT, et al. (2014). Tryptophan-based fluorophores for studying protein conformational changes. Bioorg Med Chem, 22, 5924–34
  • Taylor MT, Blackman ML, Dmitrenko O, Fox JM. (2011). Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. J Am Chem Soc, 133, 9646–9
  • Tian F, Lu Y, Manibusan A, et al. (2014). A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci USA, 111, 1766–71
  • Trussel S, Dumelin C, Frey K, et al. (2009). New strategy for the extension of the serum half-life of antibody fragments. Bioconjug Chem, 20, 2286–92
  • Tuley A, Lee YJ, Wu B, et al. (2014). A genetically encoded aldehyde for rapid protein labelling. Chem Commun (Camb), 50, 7424–6
  • Ulrich S, Boturyn D, Marra A, et al. (2014). Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry, 20, 34–41
  • Vrabel M, Kolle P, Brunner KM, et al. (2013). Norbornenes in inverse electron-demand Diels-Alder reactions. Chemistry, 19, 13309–12
  • Wagner AM, Fegley MW, Warner JB, et al. (2011). N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc, 133, 15139–47
  • Wakankar A, Chen Y, Gokarn Y, Jacobson FS. (2011). Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs, 3, 161–72
  • Wang L, Brock A, Herberich B, Schultz PG. (2001). Expanding the genetic code of Escherichia coli. Science, 292, 498–500
  • Wang YS, Youngster S, Grace M, et al. (2002). Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev, 54, 547–70
  • Wang L, Zhang Z, Brock A, Schultz PG. (2003). Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci USA, 100, 56–61
  • Wang L, Amphlett G, Blattler WA, et al. (2005). Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci, 14, 2436–46
  • Wang Y, Vera CI, Lin Q. (2007). Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org Lett, 9, 4155–8
  • Wang Y, Hu WJ, Song W, et al. (2008). Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org Lett, 10, 3725–8
  • Wang J, Zhang W, Song W, et al. (2010). A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc, 132, 14812–8
  • Wang K, Schmied WH, Chin JW. (2012). Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl, 51, 2288–97
  • Wang K, Sachdeva A, Cox DJ, et al. (2014). Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem, 6, 393–403
  • Weiner LM, Surana R, Wang S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol, 10, 317–27
  • Wendeler M, Grinberg L, Wang X, et al. (2014). Enhanced catalysis of oxime-based bioconjugations by substituted anilines. Bioconjug Chem, 25, 93–101
  • Willems LI, Li N, Florea BI, et al. (2012). Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. Angew Chem Int Ed Engl, 51, 4431–4
  • Wolf E, Hofmeister R, Kufer P, et al. (2005). BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today, 10, 1237–44
  • Wu AM, Senter PD. (2005). Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol, 23, 1137–46
  • Wu JC, Hutchings CH, Lindsay MJ, et al. (2014). Enhanced enzyme stability through site-directed covalent immobilization. J Biotechnol, 193C, 83–90
  • Xiang Z, Ren H, Hu YS, et al. (2013). Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods, 10, 885–8
  • Xiang Z, Lacey VK, Ren H, et al. (2014). Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed Engl, 53, 2190–3
  • Yu Z, Ho LY, Wang Z, Lin Q. (2011). Discovery of new photoactivatable diaryltetrazoles for photoclick chemistry via ‘scaffold hopping’. Bioorg Med Chem Lett, 21, 5033–6
  • Yu Z, Pan Y, Wang Z, et al. (2012). Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl, 51, 10600–4
  • Zeng H, Xie J, Schultz PG. (2006). Genetic introduction of a diketone-containing amino acid into proteins. Bioorg Med Chem Lett, 16, 5356–9
  • Zeng Y, Wang W, Liu WR. (2014). Towards reassigning the rare AGG codon in Escherichia coli. Chembiochem, 15, 1750–4
  • Zhang Z, Wang L, Brock A, Schultz PG. (2002). The selective incorporation of alkenes into proteins in Escherichia coli. Angew Chem Int Ed Engl, 41, 2840–2
  • Zhang Z, Smith BA, Wang L, et al. (2003). A new strategy for the site-specific modification of proteins in vivo. Biochemistry, 42, 6735–46
  • Zinman B, Philis-Tsimikas A, Cariou B, et al. (2012). Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes: a 1-year, randomized, treat-to-target trial (BEGIN Once Long). Diabetes Care, 35, 2464–71

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.