1,621
Views
57
CrossRef citations to date
0
Altmetric
Review Article

A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level

, &
Pages 884-890 | Received 01 Nov 2014, Accepted 13 Apr 2015, Published online: 15 Jul 2015

References

  • Adams F, Van Vaeck L, Barrett R. (2005). Advanced analytical techniques: platform for nano materials science. Spectrochim Acta B Atom Spectrosc, 60, 13–26
  • Alonso C. (2012). Tips and tricks for high quality MAR-FISH preparations: focus on bacterioplankton analysis. Syst Appl Microbiol, 35, 503–12
  • Alonso C, Musat N, Adam B, et al. (2012). HISH–SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol, 35, 541–8
  • Amann RI, Ludwig W, Schleifer KH. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59, 143–69
  • Atlas RM, Bartha R. (1981). Microbial ecology: fundamentals and applications. Philippines: Addison-Wesley Publishing Company
  • Behrens S, Losekann T, Pett-Ridge J, et al. (2008). Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol, 74, 3143–50
  • Cho BC, Azam F. (1988). Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 332, 441–3
  • Clement S, Compston W, Newstead G. (1977). Design of a large, high resolution ion microprobe. In: Proceedings of the international secondary ion mass spectrometry conference. Berlin: Springer-Verlag, 12–7
  • Cockell C, van Calsteren P, Mosselmans JFW, et al. (2010). Microbial endolithic colonization and the geochemical environment in young seafloor basalts. Chem Geol, 279, 17–30
  • Curtis TP, Sloan WT, Scannell JW. (2002). Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA, 99, 10494–9
  • Dekas AE, Orphan VJ. (2011). Identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Meth Enzymol, 486, 281–305
  • Dekas, AE, Poretsky RS, Orphan VJ. (2009). Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 326, 422–6
  • Eybe T, Audinot J, Bohn T, et al. (2008). NanoSIMS 50 elucidation of the natural element composition in structures of cyanobacteria and their exposure to halogen compounds. J Appl Microbiol, 105, 1502–10
  • Fayek M, Utsunomiya S, Pfiffner SM, et al. (2005). The application of HRTEM techniques and nanosims to chemically and isotopically characterize Geobacter sulfurreducens surfaces. Can Mineral, 43, 1631–41
  • Fike DA, Gammon CL, Ziebis W, Orphan VJ. (2008). Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J, 2, 749–59
  • Finzi-Hart JA, Pett-Ridge J, Weber PK, et al. (2009). Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc Natl Acad Sci USA, 106, 6345–50
  • Foster RA, Kuypers MMM, Vagner T, et al. (2011). Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J, 5, 1484–93
  • Foster RA, Sztejrenszus S, Kuypers MMM. (2013). Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol, 49, 502–16
  • Guerquin-Kern J-L, Wu T-D, Quintana C, Croisy A. (2005). Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta, 1724, 228–38
  • Gyngard F, Zinner E, Nittler LR, et al. (2010). Automated NanoSIMS measurements of spinel stardust from the Murray meteorite. Astrophys J, 717, 107–20
  • Heister K, Höschen C, Pronk GJ, et al. (2012). NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. J Soil Sediment, 12, 35–47
  • Herrmann AM, Clode PL, Fletcher IR, et al. (2007). A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Spectrom, 21, 29–34
  • Hillion F, Daigne B, Girard F, et al. (1993). A new high performance instrument: the CAMECA NanoSIMS, 50. In Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) Proceedings of the 9th SIMS conference. Yokohama 254–7
  • Hong TE, Jeong E, Baek S, et al. (2012). Nano SIMS characterization of boron- and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries. J Appl Electrochem, 42, 41–6
  • Hoppe P, Cohen S, Meibom A. (2013). NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostandards Geoanal Res, 37, 111–54
  • Huang WE, Stoecker K, Griffiths R, et al. (2007). Raman – FISH: combining stable – isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol, 9, 1878–89
  • Keller M, Zengler K. (2004). Tapping into microbial diversity. Nat Rev Microbiol, 2, 141–50
  • Kilburn MR, Jones DL, Clode PL, et al. (2010). Application of nanoscale secondary ion mass spectrometry to plant cell research. Plant Signal Behav, 5, 760–2
  • Krupke A, Musat N, LaRoche J, et al. (2013). In situ identification and N-2 and C fixation rates of uncultivated cyanobacteria populations. Syst Appl Microbiol, 36, 259–71
  • Kubota K, Morono Y, Ito M, et al. (2014). Gold-ISH: a nano-size gold particle-based phylogenetic identification compatible with NanoSIMS. Syst Appl Microbiol, 37, 261–6
  • Lechene C, Hillion F, McMahon G, et al. (2006). High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol, 5, 20–30
  • Lechene CP, Luyten Y, McMahon G, Distel DL. (2007). Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science, 317, 1563–6
  • Li M, Xu J, Romero-Gonzalez M, et al. (2012). Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol, 23, 56–63
  • Li T, Wu TD, Mazéas L, et al. (2008). Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol, 10, 580–8
  • Liu X, Eusterhues K, Thieme J, et al. (2013). STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environ Sci Technol, 47, 3158–66
  • Lozano-Perez S, Schröder M, Yamada T, et al. (2008). Using NanoSIMS to map trace elements in stainless steels from nuclear reactors. Appl Surface Sci, 255, 1541–3
  • McLoughlin N, Wacey D, Kruber C, et al. (2011). A combined TEM and NanoSIMS study of endolithic microfossils in altered seafloor basalt. Chem Geol, 289, 154–62
  • Moore KL, Chen Y, Meene AM, et al. (2014). Combined NanoSIMS and synchrotron X – ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol, 201, 104–15
  • Moore KL, Lombi E, Zhao F-J, Grovenor CR. (2012). Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Anal Bioanal Chem, 402, 3263–73
  • Moore KL, Schröder M, Lombi E, et al. (2010). NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol, 185, 434–45
  • Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. (2013). Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev, 37, 384–406
  • Mueller CW, Kölbl A, Hoeschen C, et al. (2012). Submicron scale imaging of soil organic matter dynamics using NanoSIMS – from single particles to intact aggregates. Org Geochem, 42, 1476–88
  • Musat N, Halm H, Winterholler B, et al. (2008). A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA, 105, 17861–6
  • Musat N, Stryhanyuk H, Bombach P, et al. (2014). The effect of FISH and CARD-FISH on the isotopic composition of 13C-and 15N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst Appl Microbiol, 37, 267–76
  • Neufeld JD, Wagner M, Murrell JC. (2007). Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J, 1, 103–10
  • Niftrik LA, Fuerst JA, Damsté JSS, et al. (2004). The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett, 233, 7–13
  • Orphan VJ, House CH, Hinrichs K-U, et al. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–7
  • Ploug H, Adam B, Musat N, et al. (2011). Carbon, nitrogen and O-2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J, 5, 1549–58
  • Ploug H, Musat N, Adam B, et al. (2010). Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J, 4, 1215–23
  • Popa R, Weber PK, Pett-Ridge J, et al. (2007). Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J, 1, 354–60
  • Slaveykova VI, Guignard C, Eybe T, et al. (2009). Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal Bioanal Chem, 393, 583–9
  • Stadermann F, Walker R, Zinner E. (1999). NanoSIMS: the next generation ion probe for the microanalysis of extraterrestrial material. Meteor Planet Sci, 34, 111–2
  • Strous M, Pelletier E, Mangenot S, et al. (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440, 790–4
  • Tischer K, Zeder M, Klug R, et al. (2012). Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol, 35, 526–32
  • Tourna M, Stieglmeier M, Spang A, et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA, 108, 8420–5
  • Wacey D, Kilburn MR, McLoughlin N, et al. (2008). Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J Geol Soc, 165, 43–53
  • Wagner M, Nielsen PH, Loy A, et al. (2006). Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol, 17, 83–91
  • Wegener G, Holler T, Kellermann M, et al. (2009). New insights into AOM by stable isotope probing combined with HISH-nanoSIMS and membrane-derived lipid analysis. Geochim Cosmochim Acta, 73, 1424
  • Woebken D, Burow LC, Prufert-Bebout L, et al. (2012). Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J, 6, 1427–39
  • Wolfe-Simon F, Blum JS, Kulp TR, et al. (2011). A bacterium that can grow by using arsenic instead of phosphorus. Science, 332, 1163–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.