6,991
Views
22
CrossRef citations to date
0
Altmetric
Review Article

High molecular weight DNA assembly in vivo for synthetic biology applications

&
Pages 277-286 | Received 23 Sep 2015, Accepted 03 Dec 2015, Published online: 10 Feb 2016

References

  • Kosuri S, Eroshenko N, Leproust EM, et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol. 2010;28:1295–1299.
  • Matzas M, Stähler PF, Kefer N, et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol. 2010;28:1291–1294.
  • Merryman C, Gibson DG. Methods and applications for assembling large DNA constructs. Metab Eng. 2012;14:196–204.
  • Blake WJ, Chapman BA, Zindal A, et al. Pairwise selection assembly for sequence-independent construction of long-length DNA. Nucleic Acids Res. 2010;38:2594–2602.
  • Quan J, Tian J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc. 2011;6:242–251.
  • Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 2012;40:e55
  • Storch M, Casini A, Mackrow B,, et al. BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology. ACS Synth Biol. 2015;4(7):781–7
  • Trubitsyna M, Michlewski G, Cai Y, et al. PaperClip: rapid multi-part DNA assembly from existing libraries. Nucleic Acids Res. 2014;42:e154
  • Juhas M, Davenport PW, Brown JR, et al. Meeting report: The Cambridge BioDesign TechEvent – synthetic biology, a new “age of wonder”? Biotechnol J. 2013;8:761–763
  • Seo SW, Yang J, Min BE, et al. Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv. 2013;31(6):811–7
  • Juhas M. On the road to synthetic life: the minimal cell and genome-scale engineering. Crit Rev Biotechnol. 2015;1–8. Epub ahead of print.
  • Gibson D, Young L, Chuang R, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–345.
  • Li MZ, Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods. 2007;4:251–256.
  • Tsuge K, Matsui K, Itaya M. One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res. 2003;31:e133.
  • Nishizaki T, Tsuge K, Itaya M, et al. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 2007;73:1355–1361.
  • Tsuge K, Matsui K, Itaya M. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol. 2007;129:592–603.
  • Tsuge K, Sato Y, Kobayashi Y, et al. Method of preparing an equimolar DNA mixture for one-step DNA assembly of over 50 fragments. Sci Rep. 2015;5:10655.
  • de Kok S, Stanton LH, Slaby T, et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 2014;3(2):97–106
  • Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One. 2009;4:e6441.
  • Juhas M, Reuß DR, Zhu B, et al. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology. 2014;160:2341–2351.
  • Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Lett. 2012;586:2112–2121.
  • Dikicioglu D, Pir P, Oliver SG. Predicting complex phenotype-genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory. Biotechnol J. 2013;8:1017–1034.
  • Li M, Borodina I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2014. Epub ahead of print.
  • Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res. 2014. Epub ahead of print.
  • Dai Z, Liu Y, Guo J,, et al. Yeast synthetic biology for high-value metabolites. FEMS Yeast Res. 2014. Epub ahead of print.
  • Gibson D, Glass J, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56.
  • Gibson D, Benders G, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220.
  • Itaya M, Fujita K, Kuroki A, et al. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods. 2008;5:41–43.
  • Perkel JM. Genome engineering: writing a better genome. Biotechniques. 2012;53:21–35.
  • Dymond JS, Richardson SM, Coombes CE, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. 2011;477:471–476.
  • Nawy T. Yeast 2.0. Nat Methods. 2011;8:895.
  • Enyeart PJ, Ellington AD. Synthetic biology: a yeast for all reasons. Nature. 2011;477:413–414.
  • Jovicevic D, Blount BA, Ellis T. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast. Bioessays. 2014;36:855–860.
  • Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58.
  • Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3:e3647.
  • Engler C, Gruetzner R, Kandzia R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4:e5553.
  • Chen WH, Qin ZJ, Wang J, et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly. Nucleic Acids Res. 2013;41:e93.
  • Sarrion-Perdigones A, Falconi EE, Zandalinas SI, et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 2011;6:e21622.
  • Casini A, MacDonald JT, De Jonghe J, et al. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res. 2014;42:e7.
  • Weber E, Engler C, Gruetzner R, et al. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011;6:e16765.
  • Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies. FEMS Yeast Res. 2014. Epub ahead of print.
  • Lisby M, Rothstein R. Cell biology of mitotic recombination. Cold Spring Harb Perspect Biol. 2015;7:a016535
  • Muller H, Annaluru N, Schwerzmann JW, et al. Assembling large DNA segments in yeast. Methods Mol Biol. 2012;852:133–150.
  • T Jakociunas, AS Rajkumar, J Zhang, et al. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4(11):1226–1234
  • Shao Z, Zhao H. Construction and engineering of large biochemical pathways via DNA assembler. Methods Mol Biol. 2013;1073:85–106.
  • Kuijpers NG, Solis-Escalante D, Bosman L, et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact. 2013;12:47.
  • Lin Q, Jia B, Mitchell LA, et al. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4:213–220.
  • Kuijpers NG, Chroumpi S, Vos T, et al. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res. 2013;13:769–781.
  • Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19:773–776.
  • Chou CC, Patel MT, Gartenberg MR. A series of conditional shuttle vectors for targeted genomic integration in budding yeast. FEMS Yeast Res. 2015;15.
  • Manabe K, Kageyama Y, Morimoto T, et al. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact. 2013;12:18.
  • Hao T, Han B, Ma H, et al. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Mol Biosyst. 2013;9:2034–2044.
  • Commichau FM, Alzinger A, Sande R, et al. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng. 2014;25:38–49.
  • Yadav T, Carrasco B, Serrano E, et al. Roles of Bacillus subtilis DprA and SsbA in RecA-mediated genetic recombination. J Biol Chem. 2014;289:27640–27652.
  • Shi T, Wang G, Wang Z, et al. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome. PLoS One. 2013;8:e81370.
  • Ogawa T, Iwata T, Kaneko S, et al. An inducible recA expression Bacillus subtilis genome vector for stable manipulation of large DNA fragments. BMC Genomics. 2015;16:209.
  • Carrasco B, Yadav T, Serrano E, et al. Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair. Nucleic Acids Res. 2015;43:5984–5997.
  • Watanabe S, Shiwa Y, Itaya M, et al. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome. J Bacteriol. 2012;194:7007.
  • Iwata T, Kaneko S, Shiwa Y, et al. Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis. BMC Genomics. 2013;14:300.
  • Ajikumar PK, Xiao WH, Tyo KE, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010;330:70–74.
  • Park SJ, Lee TW, Lim SC, et al. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol. 2012;93:273–283.
  • Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011;7:445–452.
  • Zhou L, Niu DD, Tian KM, et al. Genetically switched D-lactate production in Escherichia coli. Metab Eng. 2012;14:560–568.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–6645.
  • Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet. 2001;2:769–779.
  • Murphy KC. The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J Mol Biol. 2007;371:19–24.
  • Fu J, Bian X, Hu S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol. 2012;30:440–446.
  • Zhang Y, Buchholz F, Muyrers JP, et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20:123–128.
  • Marcellin E, Chen WY, Nielsen LK. Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus. Metab Eng. 2010;12:62–69.
  • Sabri S, Steen JA, Bongers M, et al. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Fact. 2013;12:60.
  • Ublinskaya AA, Samsonov VV, Mashko SV, et al. A PCR-free cloning method for the targeted ϕ80 Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods. 2012;89:167–173.
  • Kuhlman TE, Cox EC. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res. 2010;38:e92.
  • Yang J, Sun B, Huang H, et al. High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl Environ Microbiol. 2014;80:3826–3834.
  • Juhas M, Evans LD, Frost J, et al. Escherichia coli Flagellar Genes as Target Sites for Integration and Expression of Genetic Circuits. PLoS One. 2014;9:e111451.
  • Juhas M, Ajioka JW. Identification and validation of novel chromosomal integration and expression loci in Escherichia coli flagellar region 1. PLoS One. 2015;10:e0123007.
  • Juhas M, Ajioka JW. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions. Microb Biotechnol. 2015;8:726–738.
  • Gibson DG. Programming biological operating systems: genome design, assembly and activation. Nat Methods. 2014;11:521–526.
  • Itaya M. A synthetic DNA transplant. Nat Biotechnol. 2010;28:687–689.
  • Karas BJ, Jablanovic J, Sun L, et al. Direct transfer of whole genomes from bacteria to yeast. Nat Methods. 2013;10(5):410–2
  • Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011;333:348–353.
  • Mandell DJ, Lajoie MJ, Mee MT, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55–60.
  • Glass JI. Synthetic genomics and the construction of a synthetic bacterial cell. Perspect Biol Med. 2012;55:473–489.
  • Juhas M. Pseudomonas aeruginosa essentials: an update on investigation of essential genes. Microbiology 2015;161:2053–2060
  • Juhas M, Eberl L, Church GM. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol. 2012;30:601–607.
  • Werneburg M, Zerbe K, Juhas M, et al. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. Chembiochem. 2012;13:1767–1775.
  • Glass J, Assad-Garcia N, Alperovich N, et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA. 2006;103:425–430.
  • Pósfai G, Plunkett Gr, Fehér T, et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–1046.
  • Langridge GC, Phan MD, Turner DJ, et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 2009;19:2308–2316.
  • Moya A, Gil R, Latorre A, et al. Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev. 2009;33:225–235.
  • Juhas M, Stark M, von Mering C, et al. High confidence prediction of essential genes in Burkholderia cenocepacia. PLoS One. 2012;7:e40064
  • Juhas M, Eberl L, Glass JI. Essence of life: essential genes of minimal genomes. Trends Cell Biol. 2011;21:562–568.
  • Lee SA, Gallagher LA, Thongdee M, et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2015;112(16):5189–94.
  • Turner KH, Wessel AK, Palmer GC, et al. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci USA. 2015;112:4110–4115.
  • Yu B, Sung B, Koob M, et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol. 2002;20:1018–1023.
  • Noskov VN, Ma L, Chen S, et al. Recombinase-mediated cassette exchange (RMCE) system for functional genomics studies in Mycoplasma mycoides. Biol Proced Online. 2015;17:6.
  • Suzuki Y, Assad-Garcia N, Kostylev M, et al. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling. Genome Res. 2015;25:435–444.
  • Quiles-Puchalt N, Carpena N, Alonso JC, et al. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci USA. 2014;111:6016–6021.
  • Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res. 2013;173:247–259.
  • Zhang L, Sun Y, Chang L, et al. A novel method to produce armored double-stranded DNA by encapsulation of MS2 viral capsids. Appl Microbiol Biotechnol. 2015;99:7047–7057.
  • Gallagher LA, Shendure J, Manoil C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio. 2011;2:e00315–e00310.
  • Skurnik D, Roux D, Aschard H, et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog. 2013;9:e1003582.