211
Views
87
CrossRef citations to date
0
Altmetric
Research Article

The Biochemistry of Degradation of Polyethers

&
Pages 273-307 | Published online: 27 Sep 2008

References

  • Fukui S., Tanaka A. Application of biocatalysts immobilized by prepolymer methods. Adv. Biochem. Eng. Biotech. 1984; 29: 1
  • Wieder K. J., Davis F. F. Enzyme therapy. II. Effect of covalent attachment of polyethylene glycol on biochemical parameters and immunological determinants of β-glucosidase and α-galactosidase. J. Appl. Biochem. 1983; 5: 337
  • Yamakawa M., Hishinuma F., Gunge N. Intact cell transformation of. Saccharomyces cere-visiae Agric. Biol. Chem. 1985; 49: 869, by polyethylene glycol
  • Klebe R. J., Harriss J. V., Sharp Z. D., Douglas M. G. A general method for polyethyleneglycol-induced genetic transformation of bacteria and yeast. Gene 1983; 25: 333
  • Herold D. A., Rodeheaver G. T., Bellamy W. T., Fitton L. A., Brans D. E., Edlich R. F. Toxicity of topical polyethylene glycol, Toxicol. Appl. Pharmacol. 1982; 65: 329
  • Houston C. A. Detergent alcohols in the news. J. Am. Oil Chem. Soc 1981; 58: 873A
  • Cox D. P. The biodegradation of polyethylene glycols, in. Advances in Applied Microbiology, D. Perlman. Academic Press, New York 1978; 23: 173
  • Stevenson D. G. The absorptiometric determination of a non-ionic detergent. Analyst 1954; 79: 504
  • Lamb C. B., Jenkins G. F. B.O.D. of synthetic organic chemicals. Eng. Bull. Purdue Univ. Eng. Ext. Ser. 1952; 79: 326
  • Mills E. J., Stack V. T. Biological oxidation of synthetic organic chemicals. Eng. Bull. Purdue Univ. Eng. Ext. Ser. 1954; 83: 492
  • De Ley J. Oxidation of aliphatic glycols by acetic acid bacteria. Bacteriol. Rev. 1964; 28: 164
  • Evans W. H., David E. J. Biodegradation of mono-, di-, and triethylene glycols in river waters under controlled laboratory conditions. Water Res. 1974; 8: 97
  • Fincher E. L., Payne W. J. Bacterial utilization of ether glycols. Appl. Microbiol. 1962; 10: 542
  • Borstlap C., Kortland C. Über den biologischen Abbau nichtionogener Waschmittel unter aeroben Bedingungen. Fette, Seifen, Anstrichm. 1967; 69: 736
  • Patterson S. J., Scott C. C, Tucker K. B. E. Nonionic detergent degradation. J. Am. Oil Chem. Soc 1970; 47: 37, III. Initial mechanism of the degradation
  • Sturm R. N. Biodegradability of nonionic surfactants: screening test for predicting rate and ultimate biodegradation. J. Am. Oil Chem. Soc 1973; 50: 159
  • Pitter P. Über die biologische Abbäufahigkeit der Polyäthylenoxide. Collect. Czech. Chem. Com-mun. 1973; 38: 2665
  • Ohmata S., Kojima N., Sakai T. Degradation of polyethylene glycol by a bacterium isolated from soil. J. Ferment. Assoc. Japan 1974; 32: 196
  • Harada T., Nagashima Y. Utilization of alkylether compounds by soil bacteria. J. Ferment. Technol. 1975; 53: 218
  • Ogata K., Kawai F., Fukaya M., Tani Y. Isolation of polyethylene glycols-assimilable bacteria. J. Ferment. Technol. 1975; 53: 757
  • Kawai F., Fukaya M., Tani Y., Ogata K. Identification of polyethylene glycols (PEGs)-assimilable bacteria and culture characteristics of PEG 6000 degradation by a mixed culture. J. Ferment. Technol. 1977; 55: 429
  • Haines J. R., Alexander M. Microbial degradation of polyethylene glycols. Appl. Microbiol. 1975; 29: 621
  • Cox D. P., Conway R. A. Proc. 3rd Int. Biodegradation Symp, J. M. Sharpley, A. M. Kaplan. Applied Science Publishers, London 1976; 835
  • Jones N., Watson G. K. Ethylene glycol and polyethylene glycol catabolism by a sewage bacterium. Biochem. Soc. Trans. 1976; 4: 891
  • Watson G. K., Jones N. The biodegradation of polyethylene glycols by sewage bacteria. Water Res. 1977; 11: 95
  • Suzuki T., Kusunoki E. Treatment of Wastewater Containing Polyalkylene Glycol. Japanese Patent 1979; 91(10)78587v, 54/69253 (79/69253CA
  • Hosoya H., Miyazaki N., Sugisaki Y., Takanashi E., Tsurufuji M., Yamasaki M., Tamura G. Bacterial degradation of synthetic polymers and oligomers with the special reference to the case of polyethylene glycol. Agric Biol. Chem. 1978; 42: 1545
  • Jenkins L. D. L., Cook K. A. Microbial degradation of polyethylene glycols. J. Appl. Bacte-riol. 1979; 47: 75
  • Thélu J., Medina L., Pelmont J. Oxidation of polyoxyethylene oligomers by an inducible enzyme from. Pseudomonas FEMS Microbiol. Lett. 1980; 8: 187, P400
  • Pearce B. A., Heydeman M. T. Metabolism of di(ethylene glycol)[2-(2′-hydroxy-ethoxy)ethanol] and other short poly(ethylene glycol)s by Gram-negative bacteria. J. Gen. Microbiol. 1980; 118: 21
  • Schoberl P. Polyethylenglykolketten-Metabolismus durch. Pseudomonas fluorescens 1983; 20: 57, Stamm P200 am Beispiel des Triethylenglykols, Tenside Deterg.
  • Schoberl P. Der Metabolismus von Monoethylen-bzw. Pseudomonas fluorescens 1985; 22: 70, Stamm P201Diethylenglykol durch Corynebacterium spec, Stamm E bzwTenside Deterg.
  • Steber J., Wierich D. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants. Appl. Environ. Microbiol. 1985; 49: 530
  • Kawai F., Yamanaka H. Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism. Arch. Microbiol. 1986; 146: 125
  • Payne W. J. Pure culture studies of the degradation of detergent compounds. Biotech. Bioeng. 1963; 5: 355
  • Payne W. J., Todd R. L. Flavin-linked dehydrogenation of ether glycols by cell-free extracts of a soil bacterium. J. Bacteriol 1966; 91: 1533
  • Harada T., Sawada Y. Occurrence in Alcaligenes MC11 of a NAD-dependent dehydrogenase with high specificity towards ether-alcohol compounds. J. Ferment. Technol. 1977; 55: 553
  • Hino M., Murooka Y., Harada T. Enzymatic degradation of ether-alcohol compounds. J. Ferment. Technol. 1981; 59: 347S
  • Kawai F., Kimura T., Tani Y., Yamada H. Involvement of a polyethylene glycol (PEG)-oxidizing enzyme in the bacterial metabolism of PEG. Agric. Biol. Chem. 1984; 48: 1349
  • Kawai F., Kimura T., Fukaya M., Tani Y., Ogata K., Ueno T., Fukami H. Bacterial oxidation of polyethylene glycol. Appl. Environ. Microbiol. 1978; 35: 679
  • Kawai F., Kimura T., Tani Y., Yamada H., Kurachi M. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl. Environ. Microbiol. 1980; 40: 701
  • Kawai F., Yamanaka H., Ameyama M., Shinagawa E., Matsushita K., Adachi O. Identification of the prosthetic group and further characterization of a novel enzyme, polyethylene glycol dehydrogenase. Agric. Biol. Chem. 1985; 49: 1071
  • Ameyama M., Matsushita K., Ohno Y., Shinagawa E., Adachi O. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 1981; 130: 179
  • Adachi O., Shinagawa E., Matsushita K., Ameyama M. Crystallization of membrane-bound alcohol dehydrogenase of acetic acid bacteria. Agric. Biol. Chem. 1982; 46: 2859
  • Kawai F. Existence of ether bond-cleaving enzyme in a polyethylene glycol-utilizing symbiotic mixed culture. FEMS Microbiol. Lett. 1985; 30: 273
  • Patterson S. J., Scott C. C, Tucker K. B. E. Nonionic detergent degradation. J. Am. Oil Chem. Soc 1967; 44: 407, IThin-layer chromatography and foaming properties of alcohol ethoxylates
  • Kawai F., Kimura T., Tani Y., Yamada H., Ueno T., Fukami H. Identification of reaction products of polyethylene glycol dehydrogenase. Agric. Biol. Chem. 1669; 47: 1983
  • Patterson S. J., Hunt E. C., Tucker K. B. E. The determination of commonly used nonionic detergents in sewage effluents and river waters by thin-layer chromatographic method. J. Proc. Inst. Sewage Purif 1966; 2: 190
  • Mills E. J., Stack V. T. Acclimation of microorganisms for the oxidation of pure organic chemicals. Eng. Bull. Purdue Univ. Eng. Ext. Ser. 1954; 87: 449
  • Schink B., Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium. Pelobacter venetianussp. 1905; 45, nov., Appl. Environ. Microbiol.1983
  • Dwyer D. F., Tiedje J. M. Degradation of ethylene glycol and polyethylene glycols by meth-anogenic consortia. Appl. Environ. Microbiol. 1983; 46: 185
  • Grant M. A., Payne W. J. Anaerobic growth of. Alcaligenes faecalis var. denitrificansat the expense of ether glycols and nonionic detergents, Biotech. Bioeng. 1983; 25: 627
  • StraB A., Schink B. Fermentation of polyethylene glycol via acetaldehyde in. Pelobacter venetianus, Appl. Microbiol. Biotechnol. 1986; 25: 37
  • Taylor B. F., Campbell W. L., Chinoy I. Anaerobic degradation of the benzene nucleus by a facultatively anaerobic microorganism. J. Bacteriol. 1970; 102: 430
  • Gvozdyak P. I., Khazipov R. K., Udod V. M., Kravchuk V. N., Podorvan N. I. Effect of stratal water microflora from the Arlansk oil field on OP-10 nonionic surfactant. Khim. Tekhnol. Vody 1983; 5: 357
  • Kawai F., Hanada K., Tani Y., Ogata K. Bacterial degradation of water-insoluble polymer (polypropylene glycol. J. Ferment. Technol. 1977; 55: 89
  • Lukins H. B., Foster J. W. Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J. Bacteriol. 1963; 85: 1047
  • Tanaka Y., Fujii K., Tanaka A., Fukui S. Metabolism of 1,2-propanediol in a soil bacterium. J. Ferment. Technol. 1975; 53: 354
  • Nishio N., Tanaka M., Matsuno R., Kamikubo T. Production of vitamin B. Pseudomonas 1977; 55: 200, AM-1 and12 by methane-utilizing bacteriaMicrocyclus eburneus, J. Ferment. Technol.
  • Kawai F., Okamoto T., Suzuki T. Aerobic degradation of polypropylene glycol by sp Coryne-bacterium. J. Ferment. Technol 1985; 63: 239
  • Brown E. G., Hayes T. J. The absorptiometric determination of polyethyleneglycol monoole-ate. Analyst 1955; 80: 755
  • Kawai F., Maeda T., Tani Y. Degradation of Polypropylene Glycol by Immobilized Cells of. Corynebacterium sp. presented at the Jt. Meet. Kansai and Chubu Branches Agric, Japan October, 1977; 7, Chem. Soc. No. Ise
  • Kawai F. Removal of polypropylene glycol (PPG) by immobilized cells of a PPG-utilizing bacterium. The Shodai Ronshu 1982; 18(1-2)23, J. Kobe Univ. Commerce
  • Kawai F., Yamanaka H. Isolation of Polytetramethylene Glycol (PTMG)-Assimilating Microorganisms and Conditions for PTMG Degradation, presented at Ann. Kyoto, Japan April, 1986, MeetAgricChemSoc
  • Fukui M., Fukagai A., Seto K., Murooka Y., Harada T. Formation of the new compounds, O-4-hydroxybutylhomoserine and O-3-hydroxybutylhomoserine from 1,4-butanediol and 1,3-buta-nediol, respectively, by soil bacteria. J. Ferment. Technol. 1970; 48: 575
  • Menzie C. M. Reaction types in the environment, in. The Handbook of Environmental Chemistry, O. Hutzinger. Springer-Verlag, Berlin 1980; 2: 247, Part A, Ed.
  • Huggins C. H., Jensen E. V., Cleveland A. S. On phenyletherase. Proc. Soc. Exp, Biol. Med. 1948; 68: 477
  • Axelrod J. The enzymic cleavage of aromatic ethers. Biochem. J. 1956; 63: 634
  • Crawford R. L., Kirk T. K., Harkin J. M., McCoy E. Bacterial cleavage of an arylglycerol-β-aryl ether bond. Appl. Microbiol. 1973; 25: 322
  • Crawford R. L., McCoy E., Harkin J. M., Kirk T. K., Obst J. R. Degradation of methox-ylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl. Microbiol. 1973; 26: 176
  • Fukuzumi T., Takatuka H., Minami K. Enzymic degradation of lignin. Arch. Biochem. Biophys 1969; 129: 396, VThe effect of NADH on the enzymic cleavage of arylalkylether bond in veratrylglycerol-β-guaiacyl ether as lignin model compound
  • Cartwright N. J., Smith A. R. W. Bacterial attack on phenolic ethers. Biochem. J. 1967; 102: 826
  • Cartwright N. J., Smith A. R. W. The separation of vanillate O-demethylase from protocate-chuate 3,4-oxygenase by ultracentrifugation. Biochem. J. 1967; 105: 767
  • Ribbons D. W. Stoichiometry of O-demethylase activity in. Pseudomonas aeruginosa, FEBS Lett. 1970; 8: 101
  • Ribbons D. W. Requirement of two protein fractions for O-demethylase activity in. Pseudomonas testosteroni, FEBS Lett. 1971; 12: 161
  • Bernhardt F.-H., Staudinger H., Ullrich V. Eigenschaften einer p-Anisat-O-Demethylase im zellfreien Extrakt von. Pseudomonas species Hoppe-Seylers Z. Physiol. Chem. 1970; 351: 467
  • Bernhardt F.-H., Pachowsky H., Staudinger H. A 4-methoxybenzoate O-demethylase from. Pseudomonas putida 1975; 57: 241, a new type of monooxygenase system—Eur. J. Biochem.
  • Stirling D. I., Dalton H. Oxidation of dimethyl ether, methyl formate and bromomethane by Methylococcus capsulatus (Bath. J. Gen. Microbiol. 1980; 116: 277
  • Heydeman M. J. Growth of soil bacteria on diethyl ether. J. Gen. Microbiol. 1974; 81(1x)
  • Tiedje J. M., Alexander M. Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyace-tate. J. Agric. Food Chem. 1969; 17: 1080
  • Gamer Y., Gaunt J. K. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate (formation of glyoxylate by side-chain cleavage. Biochem. J. 1971; 122: 527
  • Fleeker J. R. Removal of the acetate-moiety of 2,4-dichlorophenoxyacetic acid in. Ribes sativum, Phytochemistry 1973; 12: 757
  • McFadden B. A., Howes W. V. The determination of glyoxylic acid in biological systems. Anal. Biochem. 1960; 1: 240
  • Bache R., Pfennig N. Selective isolation of Acetobacterium woodii: on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 1981; 130: 255
  • Kornberg H. L., Gotto A. M. The metabolism of C2 compounds in microorganisms. Biochem. J. 1961; 78: 69
  • Scheline R. R. Decarboxylation and demethylation of some phenolic benzoic acid derivatives by rat caecal contents. J. Pharm. Pharmacol. 1966; 18: 664
  • Scheline R. R. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol. Rev. 1973; 25: 451
  • Nomenclature Committee of the International Union of Biochemistry. Enzyme Nomenclature. Academic Press, Orlando 1984, Ed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.