70
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Biotechnological Aspects of Membrane Function

&
Pages 69-86 | Published online: 27 Sep 2008

References

  • Anraku Y. Bacterial electron transport chain. Annu. Rev. Biochem. 1988; 57: 101–132
  • Anraku Y., Umemoto N., Hirata R., Wada Y. Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 1989; 21: 589–603
  • Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta 1993; 1154: 17–49
  • Baldwin S. A., Henderson P. J. F. Homologies between sugar transporters from eukaryotes and prokaryotes. Annu. Rev. Physiol. 1989; 51: 459–471
  • Balzi E., Goffeau A. Multiple or pleiotropic drug resistance in yeast. Biochim. Biophys. Acta 1991; 1073: 241–252
  • Balzi E., Goffeau A. Genetics and biochemistry of yeast multidrug resistance. Biochim. Biophys. Acta 1994; 11187: 152–162
  • Bisson L. F., Coons D. M., Kruckenberg A. L., Lewis D. A. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 1993; 28: 259–308
  • Botstein D., Fink G. R. Yeast: an experimental organism for modern biology. Science 1988; 240: 1439–1443
  • Ciriacy M., Reifenberger E. Hexose transport. Yeast Sugar Metabolism, F. K. Zimmermann, K.-D. Entian. Technomic Publishing Co., Lancaster, PA. 1996, in press
  • Dancis A., Klausner R., Hunnebusch A. G., Barriocanal J. G. Genetical evidence that ferric reductase is required for iron uptake by Saccharomyces cerevisiae. Mol. Cell. Biol. 1990; 10: 2994–2301
  • Davis R. J. MAPKs: new JNK expands the group. Trends Biochem. Sci. 1994; 19: 470–473
  • Eddy A. A. Mechanisms of solute transport in selected eukaryotic microorganisms. Adv. Microb. Physiol. 1982; 23: 1–78
  • Entian K. D., Barnett J. A. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 1992; 17: 506–510
  • Epstein W. Bacterial transport ATPases. The Bacteria, vol. XII. Bacterial Energetics, T. A. Krulwich. Academic Press, New York 1990; 87–110
  • Errede B., Levin D. E. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 1993; 5: 254–260
  • Fiechter A., Seghezzi W. Regulation of glucose metabolism in growing yeast cells. J. Biotechnol. 1992; 27: 27–45
  • Gadsby D. C., Nairn A. C. Regulation of CFTR channel gating. Trends Biochem. Sci. 1994; 19: 513–518
  • Gartner J., Moser H., Vallee D. Mutations in the 70 kd peroxisomal membrane protein gene in Zellweger syndrome. Nature Genet. 1992; 1: 16–23
  • Georgiou G., Lin S.-C., Sharma M. M. Surface-active compounds from microorganisms. Biotechnology 1992; 10: 60–65
  • Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Fieldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnson M., Louis E. J., Mewes H. W., Murakami Y., Phillippsen P., Tettelin H., Oliver S. G. Life with 6000 genes. Science 1996; 274: 546–567
  • Goffeau A., Green N. M. The H+-ATPase from fungal plasma membranes. Monovalent Cations in Biological Systems, C. A. Pasternak. CRC Press, Boca Raton, FL 1990; 155–169
  • Goswitz C. C., Brooker R. J. Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci. 1995; 4: 534–537
  • Henderson P. J. F. The 12-transmembrane helix transporters. Curr. Opin. Cell Biol. 1993; 5: 708–721
  • Higgins C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 1992; 8: 67–113
  • Higgins C. F., Gottesman N. N. Is the multidrug transporter a “flippase”?. Trends Biochem. Sci. 1992; 17: 18–21
  • Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D. R., Gallagher M. P. Binding protein-dependent transport systems. J. Bioenerg. Biomembr. 1990; 22: 571–592
  • Höfer M. Transport Across Biological Membranes. Pitman Publishing Ltd., London 1981
  • Höfer M. Accumulation of electroneutral and charged carbohydrates by proton co-transport in Rhodotorula. Methods Enzymol. 1989; 174: 629–653
  • Höfer M., Dahle P. Glucose repression of inducible enzyme synthesis in the yeast Rhodotorula gracilis. Effect of the cell membrane transport. Eur. J. Biochem. 1972; 29: 326–332
  • Huang H. J., Hancock R. E. W. The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa. J. Bacteriol. 1996; 178: 3085–3090
  • Kaback H. R. Site-directed mutagenesis and ion-gradient driven active transport: on the path of the proton. Annu. Rev. Physiol. 1988; 50: 243–256
  • Kara B. V., Simpson W. J., Hammond J. R. M. Prediction of the fermentation performance of brewing yeast with the acidification power test. J. Inst. Brew. 1988; 94: 153–158
  • Ko H. C., Liang H., Gaber F. R. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 1993; 13: 638–648
  • Konings W. N., Poolman B., Driessen A. J. M. Can the excretion of metabolites by bacteria be manipulated?. FEMS Microbiol. Rev. 1992; 88: 93–108
  • Kruckenberg A. L. The hexose transporter family of Saccharomyces cerevisiae. Arch. Microbiol. 1996, (in press)
  • Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. Eur. J. Biochem. 1987; 168: 1258–1262
  • Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry 1988; 27: 7531–7537
  • Lesuisse E., Simon M., Klein R., Labbe P. Excretion of anthranilate and 3-hydro-xyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism. J. Gen. Microbiol. 1992; 138: 85–89
  • Levy S. B. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 1992; 36: 695–703
  • Magasanik B. Catabolic repression. Cold Spring Harb. Symp. Quant. Biol. 1961; 26: 249
  • Maiden M. C. J., Davis E. D., Baldwin S. A., Moore D. C. M., Henderson P. J. F. Mammalian and bacterial sugar transport proteins are homologous. Nature 1987; 325: 641–643
  • Maloney P. C., Ambudkar S. V., Anantharam V., Sonna L. A., Varadhachary A. Anionexchange mechanisms in bacteria. Microbiol. Rev. 1990; 54: 1–17
  • Maloy S. R. Sodium-coupled cotransport. The Bacteria, vol. XII. Bacterial Energetics, T. A. Krulwich. Academic Press, New York 1990; 203–224
  • Marger M. D., Saier M. H., Jr. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biol. Sci. 1993; 18: 13–20
  • Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J. Bioenerg. 1973; 4: 63–91
  • Monod J. La technique de culture continue, theorie et application. Ann. Inst. Pasteur. 1950; 79: 390
  • Mueckler M. Facilitative glucose transporters. Eur. J. Biochem. 1994; 219: 713–725
  • Neiman A. M. Conservation and reiteration of a kinase cascade. Trends Genet. 1993; 9: 390–394
  • Nelissen B., Mordant P., Jonniaux J.-L., de Wachter R., Goffeau A. Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett. 1995; 377: 845–858
  • Nelson N., Taiz L. The evolution of H+-ATPases. Trends Biochem. Sci. 1989; 14: 113–116
  • Nucifora G., Chu L., Misra T. K., Silver S. Cadmium resistance from Staphylococcus aureus plasmid p1258 cadA gene results from cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 1989; 86: 3544–3548
  • Biological Membranes: Structure, Biogenesis and Dynamics., J. A. F. Op dem Kamp. Springer Verlag, Berlin 1994
  • Opekarová M., Sigler K. Acidification power: indicator of metabolic activity and autolytic changes in Saccharomyces cerevisiae. Folia Microbiol. 1982; 27: 395–403
  • Özcan S., Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 1995; 15: 1564–1572
  • Paniagua-Solis J., Sanchez J., Ortiz-Navarette V., Gonzalez C. R., Isibasi A. Construction of CTB fusion proteins for screening of monoclonal antibodies against Salmonella typhi OmpC peptide loops. FEMS Microbiol. Lett. 1996; 141: 31–36
  • Pedersen P. L., Carafoli E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 1987a; 12: 146–150
  • Pedersen P. L., Carafoli E. Ion motive ATPases. II. Energy coupling and work output. Trends Biochem. Sci. 1987b; 12: 186–189
  • Polakis E. S., Bartley W., Meek G. A. Changes in the activity of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J. 1965; 97: 298–302
  • Reifenberger E., Freidel K., Ciriacy M. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 1995; 16: 157–167
  • Rose R. C. Transport of ascorbic acid and other water-soluble vitamins. Biochim. Biophys. Acta 1988; 947: 335–366
  • Russel P., Nurse P. Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeast divided. Cell 1986; 45: 781–782
  • Saier M. H., Jr., Chin A. M. Energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. The Bacteria, vol. XII. Bacterial Energetics, T. A. Krulwich. Academic Press, New York 1990; 273–299
  • Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol. Rev. 1988; 68: 177–231
  • Seno S. Ionized groups on the cell surface: their cytochemical detection and related cell function. Int. Rev. Cytol. 1987; 100: 203–247
  • Serrano R. Transport across yeast vacuolar and plasma membranes. The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. 1. Genome Dynamics, Protein Synthesis, and Bioenergetics, J. R. Broach, J. R. Pringle, E. W. Jones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1991; 523–585
  • Sigler K., Opekarová M., Kotyk A. Determination of Metabolic Activity of Glucose-Metabolizing Yeast Cells. Czechoslovak Patent 215, 861, 1982
  • Simon M., Mathes A., Blanch A., Engelhardt H. Characterization of a porin from the outer membrane of Vibrio anguillarum. J. Bacteriol. 1996; 178: 4182–4188
  • Singer S. J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol. 1990; 6: 247–296
  • Singer S. J. The structure and function of membranes—a personal memoir. J. Membr. Biol. 1992; 129: 3–12
  • Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science 1972; 175: 720–731
  • Solioz M., Mathews S., Fürst P. Cloning of the K+-ATPase of Streptococcus faecalis. Structural and evolutionary implications of its homology to the KdpB protein of Escherichia coli. J. Biol. Chem. 1987; 262: 7358–7362
  • Susta J., Hoda J., Opekarová M., Sigler K. A simple method for determining the metabolic activity of brewer's yeast during the brewing process. Food Microbiol. 1984; 1: 169–171
  • Unemoto T., Tokuda H., Hayashi M. Primary sodium pumps and their significance in bacterial energetics. The Bacteria, vol. XII. Bacterial Energetics, T. A. Krulwich. Academic Press, New York 1990; 33–54
  • van derRest M. E., Kamminga A. H., Nakano A., Anraku Y., Poolman B., Konings W. N. The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis. Microbiol. Rev. 1995; 59: 307–322
  • von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim. Biophys. Acta 1988; 947: 307–333
  • Walderhaug M. O., Litwack E. D., Epstein W. Wide distribution of homologs of Escherichia coli Kdp K+-ATPase among Gram-negative bacteria. J. Bacteriol. 1989; 171: 1192–1195
  • Zimmermann K. F. Glycolytic enzymes as regulatory factors. J. Biotechnol. 1992; 27: 17–26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.