Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 2
84
Views
13
CrossRef citations to date
0
Altmetric
Research Papers

NOCTURNALISM INDUCED BY SCHEDULED FEEDING IN DIURNAL OCTODON DEGUS

, , , &
Pages 233-250 | Received 01 Jun 2009, Accepted 03 Sep 2009, Published online: 06 Apr 2010

REFERENCES

  • Abe H, Honma S, Honma K. (2007). Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:607–615.
  • Aranda A, Sánchez-Váquez FJ, Madrid JA. (1999). Influence of water temperature on demand-feeding rhythms in sea bass. J. Fish Biol. 55:1029–1039.
  • Carneiro BTS, Araujo JF. (2009). The food-entrainable oscillator: A network of interconnected brain structures entrained by humoral signals? Chronobiol. Int. 26:1273–1289.
  • Castillo MR, Hochstetler KJ, Tavernier RJ, Greene DM, Bult-Ito A. (2004). Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:551–555.
  • Chiesa JJ, Díez-Noguera A, Cambras T. (2007). Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters. Chronobiol. Int. 24:215–234.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Duguay D, Cermakin N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Escobar C, Martínez-Merlos MT, Angeles-Castellanos M, Miñana MC, Buijs RM. (2007). Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. Eur. J. Neurosci. 26:2804–2814.
  • García-Allegue R, Lax P, Madariaga AM, Madrid JA. (1999). Locomotor and feeding activity rhythms in a light-entrained diurnal rodent, Octodon degus. Am. J. Physiol. 277:523–531.
  • Gooley JJ, Schomer A, Saper CB. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9:398–407.
  • Gwinner E. (1996). Circadian and circannual programmes in avian migration. J. Exp. Biol. 199:39–48.
  • Heesy CP. (2008). Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals. Brain Behav. Evol. 71:54–67.
  • Kas MJH, Edgar DM. (1999). A nonphotic stimulus inverts the diurnal-nocturnal phase in Octodon degus. J. Neurosci. 19:328–333.
  • Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. (2008). Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res. 1205:47–54.
  • Kenagy GJ, Nespoldo RF, Vasquez RA, Bozinovic F. (2002). Daily and seasonal limits of time and temperature to activity of degus. Rev. Chil. Hist. Nat. 75:567–581.
  • Kronfeld-Schor N, Dayan T. (2003). Partitioning of time as an ecological resource. Annu. Rev. Ecol. Syst. 34:153–181.
  • Labyak SE, Lee TM, Goel N. (1997). Rhythm chronotypes in a diurnal rodent, Octodon degus. Am. J. Physiol. 273:1058–1066.
  • Lagos VO, Bozinovic F, Contreras LC. (1995). Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risks? J. Mammal. 76:900–905.
  • López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ. (2009). Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in Gilthead Sea Bream (Sparus aurata). Chronobiol. Int. 26:1389–1408.
  • Madrid JA, Matas P, Sánchez‐Vázquez FJ, Cuenca EM. (1995). A contact eatometer for automated continuous recording of feeding behavior in rats. Physiol. Behav. 57:129–134.
  • Meserve PL, Gutierrez JR, Jaksic FM. (1993). Effects of vertebrate predation on a caviomorph rodent, the degu (Octodon degus) in a semiarid thorn scrub community in Chile. Oecologia 94:153–158.
  • Minana-Solis MC, Angeles-Castellanos M, Feillet C, Pévet P, Challet E, Escobar C. (2009). Differential effects of restricted feeding schedule on clock gene expression in the hypothalamus of the rat. Chronobiol. Int. 26:808–820.
  • Mistlberger RE. (1994). Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18:171–195.
  • Morris LG, Tate BA. (2007). Phase response curve to melatonin in a putatively diurnal rodent, Octodon degus. Chronobiol. Int. 24:407–411.
  • Mrosovsky N. (1999). Masking: History, definitions, and measurement. Chronobiol. Int. 16:415–429.
  • Mrosovsky N. (2003). Beyond the suprachiasmatic nucleus. Chronobiol. Int. 20:1–8.
  • Ocampo-Garcés A, Mena W, Hernández F, Cortés N, Palacios AG. (2006). Circadian chronotypes among wild-captured west Andean octodontids. Biol. Res. 39:209–220.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Rani S, Singh S, Malik S, Singh J, Kumar V. (2009). Synchronization of India weaver bird circadian rhythms to food and light zeitgebers: Role of pineal. Chronobiol. Int. 26:653–665.
  • Sánchez-Vázquez FJ, Zamora S, Madrid JA. (1995). Light-dark and food restriction cycles in sea bass: Effect of conflicting zeitgebers on demand-feeding rhythms. Physiol. Behav. 58:705–714.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Ilgo M, Tabata M. (1996). Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: Dual and independent phasing. Physiol. Behav. 60:665–674.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Tabata M. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. A 181:121–132.
  • Saper CB, Lu J, Chou TC, Gooley J. (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–157.
  • Sharma VK. (2003). Adaptive significance of circadian clocks. Chronobiol. Int. 20:901–919.
  • Vivanco P, Rol MA, Madrid JA. (2009). Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus. Chronobiol. Int. 26:219–241.
  • Zubidat AE, Ben-Shlomo R, Haim A. (2007). Thermoregulatory and endocrine responses to light pulses in short-day acclimated social voles (Microtus socialis). Chronobiol. Int. 24:269–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.