Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 2
81
Views
2
CrossRef citations to date
0
Altmetric
Short Communications

Short- and Long-day Responses in the Pre-adult Developmental Duration of Two Species of Camponotus Ants

, , &
Pages 163-169 | Received 17 Aug 2010, Accepted 11 Oct 2010, Published online: 13 Jan 2011

REFERENCES

  • Atwal AS. (1955). Influence of temperature, photoperiod, and food on the speed of the development, longevity, fecundity, and qualities of diamond black moth Plutella maculipennis (Curtis) (Tineidae, Lepidoptera). Aust. J. Zool. 3:185–221.
  • Baldridge RS, Rettenmeyer CW, Watkins JF II. (1980). Seasonal, nocturnal and diurnal flight periodicities of Nearctic army ant males (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 53:189–204.
  • Bhatkar AP, Whitcomb WH. (1970). Artificial diet for rearing various species of ants. Florida Entomol. 53:229–232.
  • Bowen MF, Saunders DS, Bollenbacher, Gilbert LI. (1984). In vitro reprogramming of the photoperiodic clock in an insect brain-retrocerebral complex. Proc. Natl. Acad. U. S. A. 81:5881–5884.
  • Brian MV. (1978). Production ecology of ants and termites. London: Cambridge University Press.
  • Danilevskii AS. (1965). Photoperiodism and seasonal development of insects. 1st ed. Edinburgh: Oliver and Boyd.
  • Dean JM. (1982). Control of diapuse induction by change in photoperiod in Melanoplus sanguinipes. J. Insect Physiol. 28:1035–1040.
  • Denlinger DL. (1972). Induction and termination of the pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biol. Bull. 142:11–24.
  • Doležal P, Habuštová O, Sehnal F. (2007). Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata. J. Insect Physiol. 53:849–857.
  • Haddow AJ, Yarrow IHH, Lancaster GA, Corbet PS. (1966). Nocturnal flight cycle in the males of the African doryline ants (Hymenoptera: Formicidae). Proc. R. Ent. Soc. A 41:103–106.
  • Hardie J. (1990). The photoperiodic counter, quantitative day-length effects and scotophase timing in the vetch aphid Megoura viciae. J. Insect Physiol. 36:939–949.
  • Hölldobler B, Wilson EO. (1990). The Ants. Springer, Berlin.
  • Kipyatkov VE, Lopatina EB. (1997). The influence of daily thermo periods on the duration of the seasonal cycle of development in the ants Myrmica rubra and M. ruginodis. Proc. Int. Colloquia Social Insects St. Petersburg 3–4:207–216.
  • Kipyatkov VE, Lopatina EB. (2000). Vestigial photoperiodic response in subarctic Myrmica ants. Curr. Sci. 79:97–98.
  • Lees AD. (1953). Environmental factors controlling the evocation and termination of diapause in the fruit tree red spider mite Metatetranychus ulmi kochi (Acarina:Tetranychidae). Ann. Appl. Biol. 40:449–486.
  • Lone SR, Sharma VK. (2008). Exposure to light enhances pre-adult fitness in two dark-dwelling sympatric species of ants. BMC Dev. Biol. 8:113.
  • Lone SR, Ilangovan V, Murugan M, Sharma VK. (2010). Circadian resonance in the development of two sympatric species of ants. J. Insect Physiol. 56:1611–1616.
  • Monecke S, Malan A, Wollnik F. (2006). Asymmetric control of short day response in European hamsters. J. Biol. Rhythms 21:290–300.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Santos H, Rousselet J, Magnoux E, Paiva M, Branco M, Kerdelhue C. (2007). Genetic isolation through time: allochronic differentiation of phonologically atypical populations of the Pine Processionary moth. Proc. R. Soc. London 1274:935–941.
  • Saunders DS. (1971). The temperature-compensated photoperiodic clock ‘programming’ development and pupal diapause in the flesh-fly, Sarcophaga argyrostoma. J. Insect Physiol. 17:801–812.
  • Saunders DS. (1972). Circadian control of larval growth rate in Sarcophaga argyostoma. Proc. Natl. Acad. U. S. A. 69:2738–2740.
  • Saunders DS. (1976). Circadian eclosion rhythm in Sarcophaga-argyrostomasome comparisons with photoperiodic clock. J. Comp. Physiol. 110:111–133.
  • Saunders DS. (2002). Insect clocks. 3rd ed. Amsterdam: Elsevier.
  • Spieth HR, Xue F, Strauß K. (2004). Induction and inhibition of diapause by the same photoperiod: experimental evidence for “double circadian oscillator clock”. J. Biol. Rhythms 19:483–492.
  • StatSoft. (1995). Statistica Vol. 1: General conventions and statistics 1. Tulsa, OK: StatSoft Inc.
  • Tauber CA, Tauber M, Masaki S. (1986). Seasonal adaptations of insects. Oxford, UK: Oxford University Press.
  • Vaz Nunes M. (1998). A double circadian oscillator model for quantitative photoperiodic time measurement in insects and mites. J. Theor. Biol. 194:299–311.
  • Vaz Nunes M, Hardie J. (1999). The effect of temperature on the photoperiodic ‘counters’ for female morph and sex determination in two clones of the black bean aphid, Aphis fabae. Physiol. Entomol. 24:339–345.
  • Vaz Nunes M, Saunders DS. (1999). Photoperiodic time measurements in insects: a review of clock models. J. Biol. Rhythms 14:84–104.
  • Vinogradova EB. (1967). The effect of photoperiodism on the larval development and the appearance of diapausing eggs in Aedes triseriatus Say (Diptera, Culicidae). Parasitologia 1:19–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.