Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 10
783
Views
104
CrossRef citations to date
0
Altmetric
Research Article

Clock Gene Expression Levels and Relationship With Clinical and Pathological Features in Colorectal Cancer Patients

, , , , , , , , , & show all
Pages 841-851 | Received 13 Jun 2011, Accepted 12 Aug 2011, Published online: 14 Nov 2011

REFERENCES

  • Agostino PV, Harrington ME, Ralph MR, Golombek DA. (2009). Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol. Int. 26:126–133.
  • Alhopuro P, Björklund M, Sammalkorpi H, Turunen M, Tuupanen S, Biström M, Niittymäki I, Lehtonen HJ, Kivioja T, Launonen V, Saharinen J, Nousiainen K, Hautaniemi S, Nuorva K, Mecklin JP, Järvinen H, Orntoft T, Arango D, Lehtonen R, Karhu A, Taipale J, Aaltonen LA. (2010). Mutations in the circadian gene CLOCK in colorectal cancer. Mol. Cancer Res. 8:952–960.
  • Antoch MP, Kondratov RV, Takahashi JS. (2005). Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle 4:901–907.
  • Barber RD, Harmer DW, Coleman RA, Clark BJ. (2005). GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21:389–395.
  • Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, Damas B, Jewell SD, Mayer RJ, Goldberg RM, Saltz LB, Warren RS, Redston M. (2009). Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27:1814–1821.
  • Boland CR, Thibodeau SN, Hamilton SR. (1998). A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58:5248–5257.
  • Bur IM, Cohen-Solal AM, Carmignac D, Abecassis PY, Chauvet N, Martin AO, van der Horst GT, Robinson IC, Maurel P, Mollard P, Bonnefont X. (2009). The circadian clock components CRY1 and CRY2 are necessary to sustain sex dimorphism in mouse liver metabolism. J. Biol. Chem. 284:9066–9073.
  • Chen-Goodspeed M, Lee CC. (2007). Tumor suppression and circadian function. J. Biol. Rhythms 22:291–298.
  • Chu G, Yoshida K, Narahara S, Uchikawa M, Kawamura M, Yamauchi N, Xi Y, Shigeyoshi Y, Hashimoto S, Hattori MA. (2011). Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol. Int. 28:477–487.
  • Climent J, Perez-Losada J, Quigley DA, Kim IJ, Delrosario R, Jen KY, Bosch A, Lluch A, Mao JH, Balmain A. (2010). Deletion of the PER3 gene on chromosome 1p36 in recurrent ER-positive breast cancer. J. Clin. Oncol. 28:3770–3778.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Edery I. (2000). Circadian rhythms in a nutshell. Physiol. Genomics 3:59–74.
  • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. (2002). The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iϵ. J. Biol. Chem. 277:17248–17254.
  • Erren TC, Groß JV, Meyer-Rochow VB. (2011). Light, clocks, mood, and cancer: consolidation and novel tests of latitude and instability hypotheses. Chronobiol. Int. 28:471–473.
  • Filipski E, King VM, Li XM, Granda TG, Mormont MC, Liu X. (2002). Host circadian clock as a control point in tumor progression. J. Natl. Cancer Inst. 94:690–697.
  • Filipski E, King VM, Etienne MC, Li XM, Claustrat B, Granda TG. (2004). Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R844–R851.
  • Fu L, Lee CC. (2003). The circadian clock: pacemaker and tumour suppressor. Nat. Rev. Cancer 3:350–361.
  • Fu L, Pelicano H, Liu J, Huang P, Lee CC. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50.
  • Giacchetti S, Bjarnason G, Garufi C, Genet D, Iacobelli S, Tampellini M, Smaaland R, Focan C, Coudet B, Humblet Y, Canon JL, Adenis A, Lo Re G, Carvalho C, Schueller J, Anciaux N, Lentz MA, Baron B, Gorlia T, Levi F. (2006). Phase III trial comparing 4-day chronomodulated therapy versus 2-day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: The European Organisation for Research and Treatment of Cancer Chronotherapy Group. J. Clin. Oncol. 24:3562–3569.
  • Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP. (2005). Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc. Natl. Acad. Sci. U. S. A. 102:3407–3412.
  • Hastings MH, Reddy AB, Maywood ES. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649–661.
  • Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S. (2010). Peroxisome proliferator-activated receptor-α mediates high-fat, diet-enhanced daily oscillation of plasminogen activator inhibitor-1 activity in mice. Chronobiol. Int. 27:1735–1753.
  • Hrushesky WJ, Grutsch J, Wood PA, Yang X, Oh EY, Ansell C, Kidder S, Ferrans C, Quiton DF, Reynolds J, Du-Quiton J, Levin R, Lis C, Braun D. (2009). Circadian clock manipulation for cancer prevention and control and the relief of cancer symptoms. Integr. Cancer Ther. 8:387–397.
  • Huang TS, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD. (2009). Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol. Int. 26:242–257
  • Hunt T, Sassone-Corsi P. (2007). Riding tandem: circadian clocks and the cell cycle. Cell 129:461–464.
  • IARC (International Agency for Research on Cancer). (2010). Monographs on the evaluation of carcinogenic risks to humans. Volume 98. Lyon, France: International Agency for Research on Cancer.
  • Im JS, Jung BH, Kim SE, Lee KH, Lee JK. (2010). Per3, a circadian gene, is required for Chk2 activation in human cells. FEBS Lett. 584:4731–4734.
  • Iurisci I, Filipski E, Sallam H, Harper F, Guettier C, Maire I, Hassan M, Iacobelli S, Lévi F. (2009). Liver circadian clock, a pharmacologic target of cyclin-dependent kinase inhibitor seliciclib. Chronobiol. Int. 26:1169–1188.
  • Jud C, Chappuis S, Revell VL, Sletten TL, Saaltink DJ, Cajochen C, Skene DJ, Albrecht U. (2009). Age-dependent alterations in human PER2 levels after early morning blue light exposure. Chronobiol. Int. 26:1462–1469.
  • Kemp MG, Akan Z, Yilmaz S, Grillo M, Smith-Roe SL, Kang TH, Cordeiro-Stone M, Kaufmann WK, Abraham RT, Sancar A, Unsal-Kaçmaz K. (2010). Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J. Biol. Chem. 285:16562–16571.
  • Kloog I, Haim A, Stevens RG, Portnov BA. (2009). Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol. Int. 26:108–125.
  • Koch JM, Hagenauer MH, Lee TM. (2009). The response of Per1 to light in the suprachiasmatic nucleus of the diurnal degu (Octodon degus). Chronobiol. Int. 26:1263–1271.
  • Kondratov RV, Antoch MP. (2007). Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol. 17:311–317.
  • Krugluger W, Brandstaetter A, Kállay E, Schueller J, Krexner E, Kriwanek S, Bonner E, Cross HS. (2007). Regulation of genes of the circadian clock in human colon cancer: reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res. 67:7917–7922.
  • Lee CC. (2006). Tumor suppression by the mammalian Period genes. Cancer Causes Control 17:525–530.
  • Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A, Marktl W, Ekmekcioglu C. (2009). Clock genes display rhythmic expression in human hearts. Chronobiol. Int. 26:621–636.
  • Lemmer B. (2009). Discoveries of rhythms in human biological functions: a historical review. Chronobiol. Int. 26:1019–1068.
  • Levi F, Schibler U. (2007). Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 47:593–628.
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T). Method. Methods 25:402–408.
  • Lowrey PL, Takahashi JS. (2000). Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34:533–562.
  • Luo Y, Tian W, Cai L, Wang Y, Zhang J, Teng H, Du J, Sun ZS. (2009). Expression profiling reveals a positive regulation by mPer2 on circadian rhythm of cytotoxicity receptors: Ly49C and Nkg2d. Chronobiol. Int. 26:1514–1544.
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259.
  • Mendoza J, Challet E. (2009). Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neuroscientist 15:477–488.
  • Modak C, Chai J. (2009). Potential of casein kinase I in digestive cancer screening. World J. Gastrointest. Oncol. 15:26–33.
  • Mostafaie N, Kállay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS, Huber KR, Krugluger W. (2009). Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol. Carcinog. 48:642–647.
  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. (2004). Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705.
  • Oshima T, Takenoshita S, Akaike M, Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka K, Masuda M, Imada T. (2011). Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol. Rep. 25:1439–1446.
  • Parkin DM, Bray F, Ferlay J, Pisani P. (2005). Global cancer statistics. CA Cancer J. Clin. 55:74–108.
  • Polidarová L, Soták M, Sládek M, Pacha J, Sumová A. (2009). Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol. Int. 26:607–620.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I. (2001). Rotating night shifts and risk of breast cancer in women participating in the Nurses' Health Study. J. Natl. Cancer Inst. 93:1563–1568.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA. (2003). Night-shift work and risk of colorectal cancer in the Nurses' Health Study. J. Natl. Cancer Inst. 95:825–828.
  • Schibler U, Sassone-Corsi P. (2002). A web of circadian pacemakers. Cell 11:919–922.
  • Smith KD, Fu MA, Brown EJ. (2009). Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J. Cell Biol. 187:15–23.
  • Unsal-Kaçmaz K, Chastain PD, Qu PP, Minoo P, Cordeiro-Stone M, Sancar A, Kaufmann WK. (2007). The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell. Biol. 27:3131–3142.
  • Wille JJ Jr. (2003). Circadian rhythm of tumor promotion in the two-stage model of mouse tumorigenesis. Cancer Lett. 190:143–149.
  • Wood PA, Yang X, Taber A, Oh EY, Ansell C, Ayers SE, Al-Assaad Z, Carnevale K, Berger FG, Peña MM, Hrushesky WJ. (2008). Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol. Cancer Res. 6:1786–1793.
  • Wood PA, Yang X, Hrushesky WJ. (2009). Clock genes and cancer. Integr. Cancer Ther. 8:303–308.
  • Yamamura Y, Yano I, Kudo T, Shibata S. (2010). Time-dependent inhibitory effect of lipopolysaccharide injection on Per1 and Per2 gene expression in the mouse heart and liver. Chronobiol. Int. 27:213–232.
  • Yang WS, Stockwell BR. (2008). Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol. 9:R92.
  • Yang X, Wood PA, Ansell C, Hrushesky WJ. (2009a). Circadian time-dependent tumor suppressor function of period genes. Integr. Cancer Ther. 8:309–316.
  • Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Peña MM, Hrushesky WJ. (2009b). Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J. Biochem. 145:289–297.
  • Yang X, Wood PA, Ansell CM, Quiton DF, Oh EY, Du-Quiton J, Hrushesky WJ. (2009c). The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol. Int. 26:1323–1339.
  • Yang X, Wood PA, Hrushesky WJ. (2010). Mammalian TIMELESS is required for ATM-dependent CHK2 activation and G2/M checkpoint control. J. Biol. Chem. 29:3030–3034.
  • Zeng ZL, Wu MW, Sun J, Sun YL, Cai YC, Huang YJ, Xian LJ. (2010). Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J. Biochem. 148:319–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.