Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 10
143
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The Daily Melatonin Pattern in Djungarian Hamsters Depends on the Circadian Phenotype

, , , , &
Pages 873-882 | Received 19 Jun 2011, Accepted 03 Sep 2011, Published online: 14 Nov 2011

REFERENCES

  • Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC. (2001). mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16:100–104.
  • Antle MC, Silver R. (2005). Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28:145–151.
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:11–28.
  • Bartness TJ, Goldman BD. (1989). Mammalian pineal melatonin: a clock for all seasons. Cell. Mol. Life Sci. 45:939–945.
  • Beaule C, Houle LM, Amir S. (2003). Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light. J. Mol. Neurosci. 21:133–147.
  • Brainard GC, Richardson BA, Petterborg LJ, Reiter RJ (1982). The effect of different light intensities on pineal melatonin content. Brain Res. 233:75–81.
  • Brainard GC, Richardson BA, King TS, Reiter RJ (1984). The influence of different light spectra on the suppression of pineal melatonin content in the syrian hamster. Brain Res. 294:333–339.
  • Daan S, Aschoff J. (2001). The entrainment of circadian systems. In Takahashi JS, Turek FW, Moore RY (eds.). Handbook of behavioral neurobiology. 12 vol. New York: Kluwer/Plenum, pp. 7–43.
  • Duguay D, Cermakian N. (2009). The crosstalk between clock proteins and physiology. Chronobiol. Int. 27:1479–1513.
  • Figala J, Hoffmann K, Goldau G. (1973). The annual cycle in the Djungarian hamster Phodopus sungorus Pallas. Oecology 12:89–118.
  • Goldman BD. (2001). Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms 16:283–301.
  • Goto M, Ebihara, S. (1990). The influence of different light intensities on pineal melatonin content in the retinal degenerate C3H mouse and the normal CBA mouse. Neurosci. Lett. 108:267–272.
  • Grone BP, Chang D, Bourgin P, Cao V, Fernald RD, Heller HC, Ruby NF. (2011). Acute light exposure suppresses circadian rhythms in clock gene expression. J. Biol. Rhythms 26:78–81.
  • Hamada T, LeSauter J, Venuti JM, Silver R. (2001). Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J. Neurosci. 21:7742–7750.
  • Hamada T, Antle MC, Silver R. (2004). Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur. J. Neurosci. 19:1741–1748.
  • Hazlerigg DG, Ebling FJP, Johnston JD. (2005). Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr. Biol. 15:R449–R450.
  • Hoffmann K, Illnerova H, Vanecek J. (1985). Comparison of pineal melatonin rhythms in young adult and old Djungarian hamsters (Phodopus sungorus) under long and short photoperiods. Neurosci. Lett. 56:39–43.
  • Houben T, Deboer T, van Oosterhout F, Meijer JH. (2009). Correlation with behavioral activity and rest implies circadian regulation by SCN neuronal activity levels. J. Biol. Rhythms 24:477–487.
  • Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K. (2007). Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc. Natl. Acad. Sci. U. S. A. 104:7664–7669.
  • Johnston JD. (2005). Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod. J. Neuroendocrinol. 17:459–465.
  • Klante G, Brinschwitz T, Secci K, Wollnik F, Steinlechner S. (1997). Creatinine is an appropriate reference for urinary sulphatoxymelatonin of laboratory animals and humans. J. Pineal Res. 23:191–197.
  • Lerchl A, Schlatt S. (1992). Serotonin content and melatonin production in the pineal gland of the male Djungarian hamster (Phodopus sungorus). J. Pineal Res. 12:128–134.
  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J. Neurosci. 21:4864–4874.
  • Margraf RR, Puchalski W, Lynch GR. (1992). Absence of a daily neuronal rhythm in the suprachiasmatic nuclei of acircadian Djungarian hamsters. Neurosci. Lett. 142:175–178.
  • Meijer JH, Rusak B, Gänshirt G. (1992). The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Res. 598:257–263.
  • Miyake S, Sumi Y, Yan L, Takekida S, Fukuyama T, Ishida Y, Yamaguchi S, Yagita K, Okamura H. (2000). Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci. Lett. 294:41–44.
  • Naito E, Watanabe T, Tei H, Yoshimura T, Ebihara S. (2008). Reorganization of the suprachiasmatic nucleus coding for day length. J. Biol. Rhythms 23:140–149.
  • Niehaus M, Lerchl A. (1998). Urinary 6-sulfatoxymelatonin profiles in male Djungarian hamsters (Phodopus sungorus) responding and not responding to short-day photoperiods: possible role of elevated daytime levels. J. Pineal Res. 25:167–171.
  • Perreau-Lenz S, Kalsbeek A, Garidou ML, Wortel J, van der Vliet J, van Heijningen C, Simonneaux V, Pevet P, Buijs RM (2003). Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur. J. Neurosci. 17:221–228.
  • Pévet P. (1988). The role of the pineal gland in the photoperiodic control of reproduction in different hamster species. Reprod. Nutr. Dev. 28:443–458.
  • Pévet P. (2003). Melatonin: from seasonal to circadian signal. J. Neuroendocrinol. 15:422–426.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Reuss S. (1996). Components and connections of the circadian timing system in mammals. Cell Tissue Res. 285:353–378.
  • Ribelayga C, Garidou ML, Malan A, Gauer F, Calgari C, Pevet P, Simonneaux V. (1999). Photoperiodic control of the rat pineal arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase gene expression and its effect on melatonin synthesis. J. Biol. Rhythms 14:105–115.
  • Ribelayga C, Pevet P, Simonneaux V. (2000). HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R1339–R1345.
  • Richardson BA, Studier EH, Stallone JN, Kennedy CM. (1992). Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). J. Pineal Res. 13:49–59.
  • Ruby NF, Saran A, Kang T, Franken P, Heller HC. (1996). Siberian hamsters free run or become arrhythmic after a phase delay of the photocycle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 40:R881–R890.
  • Ruby NF, Dubocovich, ML, Heller HC. (2000). Siberian hamsters that fail to reentrain to the photocycle have suppressed melatonin levels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:757–762.
  • Saper CB, Lu J, Chou TC, Gooley J. (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–157.
  • Scherbarth F, Steinlechner S. (2010). Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding. J. Comp. Physiol. B 180:935–952.
  • Schöttner K, Weinert D. (2010). Effects of light on the circadian activity rhythm of Djungarian hamsters (Phodopus sungorus) with delayed activity onset. Chronobiol. Int. 27:95–110.
  • Schöttner K, Limbach A, Weinert D. (2011a). Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts. Chronobiol. Int. 28:58–69.
  • Schöttner K, Waterhouse J, Weinert D. (2011b). The circadian body temperature rhythm of Djungarian hamsters (Phodopus sungorus) revealing different circadian phenotypes. Physiol. Behav. 103:352–358.
  • Simonneaux V, Ribelayga C. (2003). Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55:325–395.
  • Simonneaux V, Sinitskaya N, Salingre A, Garidou ML, Pevet P. (2006). Rat and Syrian hamster: two models for the regulation of AANAT gene expression. Chronobiol. Int. 23:351–359.
  • Steinlechner S, Heldmaier G, Becker H. (1983). The seasonal cycle of body weight in the Djungarian hamster: photoperiodic control and the influence of starvation and melatonin. Oecology 60:401–405
  • Steinlechner S, Buchberger A, Heldmaier G. (1987). Circadian rhythms of pineal N-acetyltransferase activity in the Djungarian hamster, Phodopus sungorus, in response to seasonal changes of natural photoperiod. J. Comp. Physiol. A 160:593–597.
  • Steinlechner S, Stieglitz A, Ruf T. (2002). Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses. J. Biol. Rhythms 17:248–258.
  • Stieglitz A, Spiegelhalter F, Klante G, Heldmaier G. (1995). Urinary 6-sulphatoxymelatonin excretion reflects pineal melatonin secretion in the Djungarian hamster (Phodopus sungorus). J. Pineal Res. 18:69–76.
  • Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM. (1999). Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J. Comp. Neurol. 406:171–182.
  • Valtonen M, Laitinen JT, Eriksson L. (1993). Renal melatonin excretion in sheep is enhanced by water diuresis. J. Endocrinol. 138:445–450.
  • Weinert D. (2000). Age-dependent changes of the circadian system. Chronobiol. Int. 17:261–283.
  • Weinert D, Schöttner K. (2007). An inbred lineage of Djungarian hamsters with a strongly attenuated ability to synchronize. Chronobiol. Int. 24:1065–1079.
  • Weinert D, Schöttner K, Surov AV, Fritzsche P, Feoktistova NY, Ushakova MV, Ryurikov GB. (2009). Circadian activity rhythms of dwarf hamsters (Phodopus spp.) under laboratory and semi-natural conditions. Russian J. Theriol. 8:47–58.
  • Yan L, Okamura H. (2002). Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur. J. Neurosci. 15:1153–1162.
  • Yan L, Takekida S, Shigeyoshi Y, Okamura H. (1999). Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94:141–150.
  • Yan L, Karatsoreos I, Lesauter J, Welsh DK, Kay S, Foley D, Silver R. (2007). Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb. Symp. Quant. Biol. 72:527–541.
  • Zlomanczuk P, Margraf RR, Lynch GR. (1991). In vitro electrical activity in the suprachiasmatic nucleus following splitting and masking of wheel-running behavior. Brain Res. 559:94–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.