Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 3
2,476
Views
119
CrossRef citations to date
0
Altmetric
Review

Clock Genes and Clock-Controlled Genes in the Regulation of Metabolic Rhythms

, &
Pages 227-251 | Received 15 Sep 2011, Accepted 08 Jan 2012, Published online: 06 Mar 2012

REFERENCES

  • Agostino PV, Harrington ME, Ralph MR, Golombek DA. (2009). Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol. Int. 26:126–133.
  • Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, Avila J, Bucan M, Ahima RS, Kaestner KH, Lazar MA. (2008). Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456:997–1000.
  • Alonso-Vale MI, Andreotti S, Peres SB, Anhê GF, das Neves Borges-Silva C, Neto JC, Lima FB. (2005). Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Am. J. Physiol. Endocrinol. Metab. 288:E805–E812.
  • Alonso-Vale MI, Andreotti S, Mukai PY, Borges-Silva CN, Peres SB, Cipolla-Neto J, Lima FB. (2008). Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 45:422–429.
  • Ando H, Takamura T, Matsuzawa-Nagata N, Shima KR, Eto T, Misu H, Shiramoto M, Tsuru T, Irie S, Fujimura A, Kaneko S. (2009). Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia 52:329–335.
  • Asher G, Schibler U. (2011). Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13:125–137.
  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328.
  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. (2010). Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953.
  • Atkinson HC, Waddell BJ. (1997). Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138:3842–3848.
  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8:476–483.
  • Bähr I, Mühlbauer E, Schucht H, Peschke E. (2011). Melatonin stimulates glucagon secretion in vitro and in vivo. J. Pineal Res. 50:336–344.
  • Bass J, Takahashi JS. (2010). Circadian integration of metabolism and energetics [review]. Science 330:1349– 1354.
  • Benedict C, Shostak A, Lange T, Brooks SJ, Schiöth HB, Schultes B, Born J, Oster H, Hallschmid M. (2012). Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/Visfatin/PBEF): impact of sleep loss and relation to glucose metabolism. J. Clin. Endocrinol. Metab. 97:E218–222.
  • Berg AH, Combs TP, Scherer PE. (2002). ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13:84–89.
  • Berrabah W, Aumercier P, Lefebvre P, Staels B. (2011). Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett. 585:1640–1650.
  • Bolli GB, De Feo P, De Cosmo S, Perriello G, Ventura MM, Calcinaro F, Lolli C, Campbell P, Brunetti P, Gerich JE. (1984). Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33:1150–1153
  • Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, Sparsø T, Holmkvist J, Marchand M, Delplanque J, Lobbens S, Rocheleau G, Durand E, De Graeve F, Chèvre JC, Borch-Johnsen K, Hartikainen AL, Ruokonen A, Tichet J, Marre M, Weill J, Heude B, Tauber M, Lemaire K, Schuit F, Elliott P, Jørgensen T, Charpentier G, Hadjadj S, Cauchi S, Vaxillaire M, Sladek R, Visvikis-Siest S, Balkau B, Lévy-Marchal C, Pattou F, Meyre D, Blakemore AI, Jarvelin MR, Walley AJ, Hansen T, Dina C, Pedersen O, Froguel P. (2009). A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41:89–94.
  • Bradley RL, Cheatham B. (1999). Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 48:272–278.
  • Bray MS, Young ME. (2007). Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes. Rev. 8:169–181.
  • Buijs RM, Kalsbeek A. (2001). Hypothalamic integration of central and peripheral clocks [review]. Nat. Rev. Neurosci. 2:521–526.
  • Burris TP. (2008). Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock [review]. Mol. Endocrinol. 22:1509–1520.
  • Cailotto C, Lei J, van der Vliet J, van Heijningen C, van Eden CG, Kalsbeek A, Pévet P, Buijs RM. (2009). Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4:pe5650.
  • Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V. (2006). Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20:1715–1727.
  • Cantó C., Auwerx J. (2009). PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20:98–105.
  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. (2005). Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394.
  • Carneiro BT, Araujo JF. (2009). The food-entrainable oscillator: a network of interconnected brain structures entrained by humoral signals? Chronobiol. Int. 26:1273–1289.
  • Castrillo A, Tontonoz P. (2004). Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu. Rev. Cell Dev. Biol. 20:455–480.
  • Challet E. (2007). Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655.
  • Charoensuksai P, Xu W. (2010). PPARs in rhythmic metabolic regulation and implications in health and disease. PPAR Res. pii:243643.
  • Chauvet C, Vanhoutteghem A, Duhem C, Saint-Auret G, Bois-Joyeux B, Djian P, Staels B, Danan JL. (2011). Control of gene expression by the retinoic acid-related orphan receptor alpha in HepG2 human hepatoma cells. PLoS ONE 6:pe22545.
  • Chedid A, Nair V. (1972). Diurnal rhythm in endoplasmic reticulum of rat liver: electron microscopic study. Science 175:176–179.
  • Chen J-D, Lin Y-C, Hsiao S-T. (2010). Obesity and high blood pressure of 12-hour shift female clean-room workers. Chronobiol. Int. 27:334–344.
  • Cheng JT, Liu IM, Chi TC, Shinozuka K, Lu FH, Wu TJ, Chang CJ. (2000). Role of adenosine in insulin-stimulated release of leptin from isolated white adipocytes of Wistar rats. Diabetes 49:20–24.
  • Chu G, Yoshida K, Narahara S, Uchikawa M, Kawamura M, Yamauchi N, Xi Y, Shigeyoshi Y, Hashimoto S, Hattori MA. (2011). Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol. Int. 28:477–487.
  • Claudel T, Cretenet G, Saumet A, Gachon F. (2007). Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett. 581:3626–3633.
  • Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334:292–295.
  • Considine RV, Nyce MR, Kolaczynski JW, Zhang PL, Ohannesian JP, Moore JH, Fox JW, Caro JF. (1997). Dexamethasone stimulates leptin release from human adipocytes: unexpected inhibition by insulin. J. Cell Biochem. 65:254–258.
  • Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML, Fu YH, Ptacek LJ, Yamamoto KR, Feldman BJ. (2011). Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J. Biol. Chem. 286:9063–9070.
  • Cretenet G, Le Clech M, Gachon F. (2010). Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 11:47–57.
  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3:1241–1247.
  • Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P. (2004). Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279:7091–7097.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals [review]. Chronobiol. Int. 24:195–213.
  • Day CP. (2006). From fat to inflammation [review]. Gastroenterology 130:207–210.
  • de Vries MJ, Nunes Cardozo B, van der Want J, de Wolf A, Meijer JH. (1993). Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat. Brain Res. 612:231–237.
  • Dietrich K, Birkmeier S, Schleinitz D, Breitfeld J, Enigk B, Müller I, Böttcher Y, Lindner T, Stumvoll M, Tönjes A, Kovacs P. (2011). Association and evolutionary studies of the melatonin receptor 1B gene (MTNR1B) in the self-contained population of Sorbs from Germany. Diabet. Med. 28:1373–1380.
  • Di Tacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S. (2011). Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333:1881–1885.
  • Doi M, Hirayama J, Sassone-Corsi P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508.
  • Doi R, Oishi K, Ishida N. (2010). CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J. Biol. Chem. 285:22114–22121.
  • Douris N, Kojima S, Pan X, Lerch-Gaggl AF, Duong SQ, Hussain MM, Green CB. (2011). Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 21:1347–1355.
  • Duez H, Staels B. (2009). Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 107:1972–1980.
  • Duez H, Staels B. (2010). Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler. Thromb. Vasc. Biol. 30:1529–1534.
  • Duez H, Staels B. (2011). Circadian control of epigenetic modifications modulates metabolism. Circ. Res. 109:353–355.
  • Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Baugé E, Havinga R, Bloks VW, Wolters H, van der Sluijs FH, Vennström B, Kuipers F, Staels B. (2008). Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135:689–698.
  • Dufour CR, Levasseur MP, Pham NH, Eichner LJ, Wilson BJ, Charest-Marcotte A, Duguay D, Poirier-Héon JF, Cermakian N, Giguère V. (2011). Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genet. 7:pe1002143.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins [review]. Chronobiol. Int. 26:1479–1513.
  • Duong HA, Robles MS, Knutti D, Weitz CJ. (2011). A molecular mechanism for circadian clock negative feedback. Science 332:1436–1439.
  • Edelstein K, Amir S. (1999). The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci. 19:372–380.
  • Edery I. (2000). Circadian rhythms in a nutshell [review]. Physiol. Genomics 3:59–74.
  • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. (2002). The Circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iϵ. J. Biol. Chem. 277:17248–17254.
  • Ekmekcioglu C, Touitou Y. (2011). Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation review]. Obes. Rev. 12:14–25.
  • Erren TC, Groß JV, Meyer-Rochow VB. (2011). Light, clocks, mood, and cancer: consolidation and novel tests of latitude and instability hypotheses. Chronobiol. Int. 28:471–473.
  • Escande C, Chini CC, Nin V, Dykhouse KM, Novak CM, Levine J, van Deursen J, Gores GJ, Chen J, Lou Z, Chini EN. (2010). Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 120:545–558.
  • Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. (2011). A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331:1315–1319.
  • Filipski E, King VM, Etienne MC, Li XM, Claustrat B, Granda TG. (2004). Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R844–R851.
  • Finck BN, Kelly DP. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116:615–622.
  • Fontaine C, Staels B. (2007). The orphan nuclear receptor Rev-erbalpha: a transcriptional link between circadian rhythmicity and cardiometabolic disease. Curr. Opin. Lipidol. 18:141–146.
  • Fontaine C, Rigamonti E, Pourcet B, Duez H, Duhem C, Fruchart JC, Chinetti-Gbaguidi G, Staels B. (2008). The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 22:1797–1811.
  • Freeman DA, Dhandapani KM, Goldman BD. (2004). The thalamic intergeniculate leaflet modulates photoperiod responsiveness in Siberian hamsters. Brain Res. 1028:31–38.
  • Froy O, Miskin R. (2010). Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2:7–27.
  • Fukuda H, Greer MA, Roberts L, Allen CF, Critchlow V, Wilson M. (1975). Nyctohemeral and sex-related variations in plasma thyrotropin, thyroxine and triiodothyronine. Endocrinology 97:1424–1431.
  • Fulco M., Sartorelli V. (2008). Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 7:3669–3679.
  • Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa M. (2009). Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 9:64–76.
  • Gachon F, Bonnefont X. (2010). Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation? Aging (Albany NY) 2:101–106.
  • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U. (2004). The mammalian circadian timing system: from gene expression to physiology [review]. Chromosoma 113:103–112.
  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. (2006). The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metabol. 4:25–36.
  • Gachon F, Leuenberger N, Claudel T, Gos P, Jouffe C, Fleury Olela F, de Mollerat du Jeu X, Wahli W, Schibler U. (2011). Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. Proc. Natl. Acad. Sci. U. S. A. 108:4794–4799.
  • Galman C, Angelin B, Rudling M. (2005). Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology 129:1445–1453.
  • Garaulet M, Madrid JA. (2009). Chronobiology, genetics and metabolic syndrome. Curr. Opin. Lipidol. 20:127–134
  • Gatfield D, Schibler U. (2008). Circadian glucose homeostasis requires compensatory interference between brain and liver clocks. Proc. Natl. Acad. Sci. U. S. A. 105:14753–14754.
  • Gilbert MR, Douris N, Tongjai S, Green CB. (2011). Nocturnin expression is induced by fasting in the white adipose tissue of restricted fed mice. PLoS ONE 6:pe17051.
  • Gilles-Gonzalez MA, Gonzalez G. (2004). Signal transduction by heme-containing PAS-domain proteins. J. Appl. Physiol. 96:774–783.
  • Glass JD, DiNardo LA, Ehlen JC. (2000). Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res. 859:224–232.
  • Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR, Besharse JC. (2007). Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 104:9888–9893.
  • Green CB, Takahashi JS, Bass J. (2008). The meter of metabolism [review]. Cell 134:728–742.
  • Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P. (2010). PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12:509–520.
  • Guarente L, Franklin H. (2011). Epstein Lecture: Sirtuins, aging, and medicine [review]. N. Engl. J. Med. 364:2235–2244.
  • Guillaumond F, Gréchez-Cassiau A, Subramaniam M, Brangolo S, Peteri-Brünback B, Staels B, Fiévet C, Spelsberg TC, Delaunay F, Teboul M. (2010). Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol. Cell. Biol. 30:3059–3070.
  • Gupta N, Ragsdale SW. (2011). Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. J. Biol. Chem. 286:4392–4403.
  • Handschin C, Spiegelman BM. (2006). Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27:728–735.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278.
  • Harri N, Thibault L. (2011). Dietry obesity caused by a specific circadian eating pattern. Chronobiol. Int. 28:216–228.
  • Hastings MH, Reddy AB, Maywood ES. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease [review]. Nat. Rev. Neurosci. 4:649–661.
  • Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S. (2010). Peroxisome proliferator-activated receptor-α mediates high-fat, diet-enhanced daily oscillation of plasminogen activator inhibitor-1 activity in mice. Chronobiol. Int. 27:1735–1753.
  • Hazlerigg DG, Barrett P, Hastings MH, Morgan PJ. (1996). Are nuclear receptors involved in pituitary responsiveness to melatonin? Mol. Cell Endocrinol. 123:53–59.
  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. (2007). CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090.
  • Hotamisligil GS. (2005). Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54( Suppl 2):S73–S78.
  • Hotamisligil GS. (2008). Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. (Lond). 32( Suppl 7):S52–S54.
  • Hou TY, Ward SM, Murad JM, Watson NP, Israel MA, Duffield GE. (2009). ID2 (inhibitor of DNA binding 2) is a rhythmically expressed transcriptional repressor required for circadian clock output in mouse liver. J. Biol. Chem. 284:31735–31745.
  • Hsieh MC, Yang SC, Tseng HL, Hwang LL, Chen CT, Shieh KR. (2010). Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int. J. Obes. (Lond). 34:227–239.
  • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. (2006). Autocrine tumor necrosis factor a links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26:3071–3084.
  • Huang TS, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD. (2009). Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol. Int. 26:242–257.
  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins Cl, Mcdonald JG, Luo G, Jones SA, Goodwin BA, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. (2005). Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217–225.
  • Iqbal J, Li X, Chang BH, Chan L, Schwartz GJ, Chua SC, Hussain MM. (2010). An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J. Lipid Res. 51:1929–1942.
  • Iurisci I, Filipski E, Sallam H, Harper F, Guettier C, Maire I, Hassan M, Iacobelli S, Lévi F. (2009). Liver circadian clock, a pharmacologic target of cyclin-dependent kinase inhibitor seliciclib. Chronobiol. Int. 26:1169–1188.
  • Jordan D, Rousset B, Perrin F, Fournier M, Orgiazzi J. (1980). Evidence for circadian variations in serum thyrotropin, 3,5,3'-triiodothyronine, and thyroxine in the rat. Endocrinology 107:1245–1248.
  • Ju D, He J, Zhao L, Zheng X, Yang G. (2012). Estrogen related receptor α-induced adipogenesis is PGC-1β-dependent. Mol. Biol. Rep. 39:3343–3354.
  • Kaasik K, Lee CC. (2004). Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471.
  • Kahn BB, Alquier T, Carling D, Hardie DG. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25.
  • Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM. (2006). SCN outputs and the hypothalamic balance of life. J. Biol. Rhythms 21:458–469.
  • Kanno Y, Otsuka S, Hiromasa T, Nakahama T, Inouye Y. (2004). Diurnal difference in CAR mRNA expression. Nucl. Recept. 2:6.
  • Kanu A, Fain JN, Bahouth SW, and Cowan GS. (2003). Regulation of leptin release by insulin, glucocorticoids, G(i)-coupled receptor agonists, and pertussis toxin in adipocytes and adipose tissue explants from obese humans in primary culture. Metabolism 52:60–66.
  • Karlsson B, Knutsson A, Lindahl B. (2001). Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 58:747–752.
  • Kaufman RJ. (1999). Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13:1211–1233.
  • Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR, Kojima S, Ackert-Bicknell C, Garg N, Horowitz MC, Adamo ML, Clemmons DR, Rosen CJ. (2010). A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc. Natl. Acad. Sci. U. S. A. 107:10508–10513.
  • Kershenbaum A, Kershenbaum A, Tarabeia J, Stein N, Lavi I, Rennert G. (2011). Unraveling seasonality in population averages: an examination of seasonal variation in glucose levels in diabetic patients using a large population-based data set. Chronobiol. Int. 28:352–360.
  • Kim JE, Chen J, Lou Z. (2008). DBC1 is a negative regulator of SIRT1. Nature 451:583–586.
  • Kloog I, Haim A, Stevens RG, Portnov BA. (2009). Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol. Int. 26:108–125.
  • Ko CH, Takahashi JS. (2006). Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15(Spec. No. 2):R271–R277.
  • Koch JM, Hagenauer MH, Lee TM. (2009). The response of Per1 to light in the suprachiasmatic nucleus of the diurnal degu (Octodon degus). Chronobiol. Int. 26:1263–1271.
  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414–421.
  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. (2007). System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5:pe34.
  • Kovár J, Lenícek M, Zimolová M, Vítek L, Jirsa M, Pitha J. (2010). Regulation of diurnal variation of cholesterol 7alpha-hydroxylase (CYP7A1) activity in healthy subjects. Physiol. Res. 59:233–238.
  • Kraus D, Fasshauer M, Ott V, Meier B, Jost M, Klein HH, Klein J. (2002). Leptin secretion and negative autocrine crosstalk with insulin in brown adipocytes. J. Endocrinol. 175:185–191.
  • Kumihiko T, Sakata K, Oishi M, Morimoto H, Nakada S, Uetani M, Nogawa K, Suwazono Y. (2010). Estimation of the benchmark duration of shiftwork associated with weight gain in male Japanese workers. Chronobiol. Int. 27:1895–1910.
  • La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. (2001). A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243.
  • Laitinen S, Staels B. (2003). Potential roles of ROR-alpha in cardiovascular endocrinology. Nucl. Recept. Signal. 1:pe011.
  • Lall GS, Biello SM. (2003). Neuropeptide Y, GABA and circadian phase shifts to photic stimuli. Neuroscience 120:915–921.
  • Lamia KA, Storch KF, Weitz CJ. (2008). Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U. S. A. 105:15172–15177.
  • Lamia KA, Sachdeva UM, Ditacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440.
  • Laposky AD, Bradley MA, Williams DL, Bass J, Turek FW. (2008). Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295:R2059–R2066.
  • Lardone PJ, Guerrero JM, Fernández-Santos JM, Rubio A, Martín-Lacave I, Carrillo-Vico A. (2011). Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res. 51:454–462.
  • Lavery DJ, Schibler U. (1993). Circadian transcription of the cholesterol 7alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev. 7:1871–1884.
  • Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U. (2009). REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7:pe1000181.
  • Lee A-H, Glimcher LH. (2009). Intersection of the unfolded protein response and hepatic lipid metabolism. Cell. Mol. Life Sci. 66:2835–2850.
  • Lee A-H, Scapa EF, Cohen DE, Glimcher LH. (2008). Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496.
  • Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K. (2008). Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell Biol. 28:6056–6065.
  • Lefebvre P, Chinetti G, Fruchart JC, Staels B. (2006). Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Invest. 116:571–580.
  • Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A, Marktl W, Ekmekcioglu C. (2009). Clock genes display rhythmic expression in human hearts. Chronobiol. Int. 26:621–636.
  • Lemmer B. (2009). Discoveries of rhythms in human biological functions: a historical review [review]. Chronobiol. Int. 26:1019–1068.
  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel , Semenkovich CF, Kelly DPED. (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3:pe101.
  • LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. (2009). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl. Acad. Sci. U. S. A. 106:13582–13587.
  • Levi F, Schibler U. (2007). Circadian rhythms: mechanisms and therapeutic implications. Ann. Rev. Pharmacol. Toxicol. 47:593–628.
  • Lewy AJ, Emens J, Sack RL, Hasler BP, Bernert RA. (2003). Zeitgeber hierarchy in humans: resetting the circadian phase positions of blind people using melatonin. Chronobiol. Int. 20:837–852.
  • Li S, Lin JD. (2009). Molecular control of circadian metabolic rhythms. J. Appl. Physiol. 107:1959–1964.
  • Li S, Chen X-W, Yu L, Saltiel AR, Lin JD. (2011). Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α. Mol. Endocrinol. 25:2084–2093.
  • Liang H, Ward WF. (2006). PGC-1α: a key regulator of energy metabolism. Adv. Physiol. Educ. 30:145–151.
  • Lin JD. (2009). Minireview: the PGC-1 coactivator networks: chromatin-remodeling and mitochondrial energy metabolism [review]. Mol. Endocrinol. 23:2–10.
  • Lin J, Handschin C, Spiegelman BM. (2005a). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1:361–370.
  • Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM. (2005b). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120:261–273.
  • Liu C, Lin JD. (2011). PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 43:248–257.
  • Liu C, Li S, Liu T, Borjigin J, Lin JD. (2007). Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481.
  • Liu C, Li H, Qi L, Loos RJ, Qi Q, Lu L, Gan W, Lin X. (2011). Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans. PLoS ONE 6:pe21464.
  • Liu S, Cai Y, Sothern RB, Guan Y, Chan P. (2007). Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol. Int. 24:793–820.
  • Long YC, Zierath JR. (2006). AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116:1776–1783.
  • Lowrey PL, Takahashi JS. (2000). Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34:33–562.
  • Lowrey PL, Takahashi JS. (2011). Genetics of circadian rhythms in Mammalian model organisms. Adv. Genet. 74:175–230.
  • Luo AH, Aston-Jones G. (2009). Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur. J. Neurosci. 29:748–760.
  • Marcheva B, Ramsey KM, Buhr , Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass JED. (2010). Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631.
  • Marino JS, Xu Y, Hill JW. (2011). Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22:275–825.
  • Martinez-Nicolas A, Ortiz-Tudela E, Madrid JA, Rol MA. (2011). Crosstalk between environmental light and internal time. Chronobiol. Int. 28:617–629.
  • Maury E, Ramsey KM, Bass J. (2010). Circadian rhythms and metabolic syndrome: from experimental genetics to human disease [review]. Circ. Res. 106:447–462.
  • Mazzoccoli G, Carughi S, Sperandeo M, Pazienza V, Giuliani F, Tarquini R. (2011a). Neuro-endocrine correlations of hypothalamic-pituitary-thyroid axis in healthy humans. J. Biol. Regul. Homeost. Agents 25:249–257.
  • Mazzoccoli G, Giuliani F, Sothern RB. (2011b). A method to evaluate dynamics and periodicity of hormone secretion. J. Biol. Regul. Homeost. Agents 25:231–238.
  • Migita H, Morser J, Kawai K. (2004). Rev-erb alpha upregulates NF-kappaB-responsive genes in vascular smooth muscle cells. FEBS Lett. 561:69–74.
  • Mimura J, Fujii-Kuriyama Y. (2003). Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta 1619:263–268.
  • Mistlberger RE. (2011). Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 104:535–545.
  • Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. (2001). Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15:995–1006.
  • Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. (2002). Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J. Biol. Chem. 277:47014–47021.
  • Moore JT, Goodwin B, Willson TM, Kliewer SA. (2002). Nuclear receptor regulation of genes involved in bile acid metabolism. Crit. Rev. Eukaryot. Gene Expr. 12:119–135.
  • Moreno-Aliaga MJ, Martinez JA, Stanhope KL, Fernandez-Otero MP, Havel PJ. (2002). Effects of Trecadrine, a beta3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes. J. Obes. Relat. Metab. Disord. 26:912–919.
  • Morton GJ, Schwartz MW. (2011). Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91:389–411.
  • Motosugi Y, Ando H, Ushijima K, Maekawa T, Ishikawa E, Kumazaki M, Fujimura A. (2011). Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant zucker diabetic Fatty rats. Chronobiol. Int. 28:968–972.
  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. (2004). Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705.
  • Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L. P., Sassone-Corsi P. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340.
  • Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657.
  • Nemoto S., Fergusson M. M, Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α{alpha}. J. Biol. Chem. 280:16456–16460.
  • Neuman K, Nornes HO, Neuman T. (1995). Helix-loop-helix transcription factors regulate Id2 gene promoter activity. FEBS Lett. 374:279–283.
  • Noshiro M, Kawamoto T, Furukawa M, Fujimoto K, Yoshida Y, Sasabe E, Tsutsumi S, Hamada T, Honma S, Onma K, Kato Y. (2004). Rhythmic expression of DEC1 and DEC2 in peripheral tissues: DEC2 is a potent suppressor for hepatic cytochrome P450s opposing DBP. Genes Cells 9:317–329.
  • Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma K, Kato Y. (2007). Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J. Biol. Rhythms 22:299–311.
  • Oike H, Nagai K, Fukushima T, Ishida N, Kobori M. (2011). Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver. PLoS ONE 6:pe23709.
  • O'Neill JS, Reddy AB. (2011). Circadian clocks in human red blood cells. Nature 469:498–503.
  • Padilha HG, Crispim CA, Zimberg IA, Folkard S, Tufik S, de Mello MT. (2010). Metabolic responses on the early shift. Chronobiol. Int. 27:1080–1092.
  • Pan X, Hussain MM. (2007). Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J. Biol. Chem. 282:24707–24719.
  • Pan X, Zhang Y, Wang L, Hussain MM. (2010). Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 12:174–186.
  • Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A. (2009). The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol. 7:pe43.
  • Paschos GK, Baggs JE, Hogenesch JB, FitzGerald GA. (2010). The role of clock genes in pharmacology [review]. Annu. Rev. Pharmacol. Toxicol. 50:187–214.
  • Peschke E, Hofmann K, Bähr I, Streck S, Albrecht E, Wedekind D, Mühlbauer E. (2011). The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia 54:1831–1840.
  • Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U. S. A. 105:9793–9798.
  • Pittendrigh CS. (1993). Temporal organization: reflections of a Darwinian Clock-Watcher [review]. Annu. Rev. Physiol. 55:16–54.
  • Polidarová L, Soták M, Sládek M, Pacha J, Sumová A. (2009). Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol. Int. 26:607–620.
  • Polidarová L, Sládek M, Soták M, Pácha J, Sumová A. (2011). Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol. Int. 28:204–215.
  • Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E. (1988). Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 318:1231–1239.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:p251– 260.
  • Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, Loos RJ, Manning AK, Jackson AU, Aulchenko Y, Potter SC, Erdos MR, Sanna S, Hottenga JJ, Wheeler E, Kaakinen M, Lyssenko V, Chen WM, Ahmadi K, Beckmann JS, Bergman RN, Bochud M, Bonnycastle LL, Buchanan TA, Cao A, Cervino A, Coin L, Collins FS, Crisponi L, de Geus EJ, Dehghan A, Deloukas P, Doney AS, Elliott P, Freimer N, Gateva V, Herder C, Hofman A, Hughes TE, Hunt S, Illig T, Inouye M, Isomaa B, Johnson T, Kong A, Krestyaninova M, Kuusisto J, Laakso M, Lim N, Lindblad U, Lindgren CM, McCann OT, Mohlke KL, Morris AD, Naitza S, Orrù M, Palmer CN, Pouta A, Randall J, Rathmann W, Saramies J, Scheet P, Scott LJ, Scuteri A, Sharp S, Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM, Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D, Wichmann HE, Willemsen G, Witteman JC, Yuan X, Zhao JH, Zeggini E, Schlessinger D, Sandhu M, Boomsma DI, Uda M, Spector TD, Penninx BW, Altshuler D, Vollenweider P, Jarvelin MR, Lakatta E, Waeber G, Fox CS, Peltonen L, Groop LC, Mooser V, Cupples LA, Thorsteinsdottir U, Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM, Stefansson K, McCarthy MI, Wareham NJ, Meigs JB, Abecasis GR. (2009). Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41:77–81.
  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM. (1999). Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371.
  • Qua X, Metz RP, Porter WW, Cassone VM, Earnest DJ. (2009). Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver. Toxicol. Appl. Pharmacol. 234:370–377.
  • Quabbe HJ, Gregor M, Bumke-Vogt C, Hardel. C. (1982). Pattern of plasma cortisol during the 24-hour sleep/wake cycle in the rhesus monkey. Endocrinology 110:1641–1646.
  • Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F. (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 14:1207–1213.
  • Ramsey K, Yoshino J, Brace C. S, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr , Lee C, Takahashi JS, Imai S, Bass JED. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654.
  • Raspé E, Duez H, Gervois P, Fiévet C, Fruchart JC, Besnard S, Mariani J, Tedgui A, Staels B. (2001). Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J. Biol. Chem. 276:2865–2871.
  • Raspé E, Duez H, Mansen A, Fontaine C, Fievet C, Fruchart JC, Vennstrom B, Staels B. (2002). Identification of Rev-erb alpha as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43:2172–2179.
  • Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S. (2000). Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 19:1045–1054.
  • Robertson McClung C. (2011). Circadian rhythms: lost in post-translation Curr. Biol. 21:R400–R402.
  • Rodgers J, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118.
  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. (2008). Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 582:46–53.
  • Rudic R, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PloS Biol. 2:pe377.
  • Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, Ross RJ. (2008). Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93:2300–2306.
  • Rutter J, Reick M, Wu LC, McKnight SL. (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514.
  • Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. (2011). An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124.
  • Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5:pe8561
  • Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P. (2011). Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany NY) 3:794–802.
  • Sahu A. (2011). Intracellular leptin-signaling pathways in hypothalamic neurons: the emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway. Neuroendocrinology 93:201–210.
  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U. S. A. 106:4453–4458.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I. (2001). Rotating night shifts and risk of breast cancer in women participating in the Nurses' Health Study. J. Natl. Cancer Inst. 93:1563–1568.
  • Schibler U, Sassone-Corsi P. (2002). A web of circadian pacemakers. Cell 111:919–922.
  • Schwimmer H, Mursu N, Haim A. (2010). Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat. Chronobiol. Int. 27:1401–1419.
  • Sha H, He Y, Chen H, Wang C, Zenno A, Shi H, Yang X, Zhang X, Qi L. (2009). The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab. 9556–9564.
  • Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M. (2005). Brain and muscle arnt‐like protein‐1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 102:12071–12076.
  • Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K, Okamatsu-Ogura Y, Kimura K, Saito M. (2011). Deficient of a clock gene, brain and muscle arnt-like protein-1 (BMAL1), induces gyslipidemia and ectopic fat formation. PLoS ONE 6:pe25231.
  • Skrzypski M, T Le T, Kaczmarek P, Pruszynska-Oszmalek E, Pietrzak P, Szczepankiewicz D, Kolodziejski PA, Sassek M, Arafat A, Wiedenmann B, Nowak KW, Strowski MZ. (2011). Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54:1841–1852.
  • Smith KD, Fu MA, Brown EJ. (2009). Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J. Cell Biol. 187:15–23.
  • So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. (2009). Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl. Acad. Sci. U. S. A. 106:17582–17587.
  • Staiger H, Machicao F, Schäfer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Häring HU, Fritsche A. (2008). Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS ONE 3:pe3962.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Sun Z, Feng D, Everett LJ, Bugge A, Lazar MA. (2011). Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3. Cold Spring Harb. Symp. Quant. Biol. Sep 6. [Epub ahead of print].
  • Takahashi JS, Hong HK, Ko CH, McDearmon EL. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease [review]. Nat. Rev. Genet. 9:764–775.
  • Takahashi S, Inoue I, Nakajima Y, Seo M, Nakano T, Yang F, Kumagai M, Komoda T, Awata T, Ikeda M, Katayama S. (2010). A promoter in the novel exon of hPPARgamma directs the circadian expression of PPARgamma. J. Atheroscler. Thromb. 17:73–83.
  • Tao W, Chen S, Shi G, Guo J, Xu Y, Liu C. (2011). SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism. Hepatology 54:1410–1420.
  • Teboul M, Gréchez-Cassiau A, Guillaumond F, Delaunay F. (2009). How nuclear receptors tell time. J. Appl. Physiol. 107:1965–1971.
  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF, Ruderman NB. (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. U. S. A. 99:16309–16313.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045.
  • Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S. (2002). A transcription factor response element for gene expression during circadian night. Nature 418:534–539.
  • Ukai-Tadenuma M, Kasukawa T, Ueda HR. (2008). Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 10:1154–1163.
  • van Ooijen G, Dixon LE, Troein C, Millar AJ. (2011). Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 21:869–875.
  • Velkoska E, Morris MJ, Burns P, Weisinger RS. (2003). Leptin reduces food intake but does not alter weight regain following food deprivation in the rat. Int. J. Obes. Relat. Meta. Disord. 27:48–54.
  • Vinciguerra M, Fulco M, Ladurner A, Sartorelli V, Rosenthal N. (2010). SirT1 in muscle physiology and disease: lessons from mouse models. Dis. Model. Mech. 3:298–303.
  • Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. (2009). Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U. S. A. 106:21453–21458.
  • Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T. (2008). Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab. 8:482–91.
  • Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC. (2001). Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev. Biol. 1:9.
  • Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RA, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP. (2009). Modulation of ROR{alpha} and ROR{gamma} activity by 7-oxygenated sterol ligands. J. Biol. Chem. 285:5013–5025.
  • Williams KW, Scott MM, Elmquist JK. (2011). Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur. J. Pharmacol. 660:2–12.
  • Wu T, Ni Y, Kato H, Fu Z. (2010). Feeding-induced rapid resetting of the hepatic circadian clock is associated with acute induction of Per2 and Dec1 transcription in rats. Chronobiol. Int. 27:1–18.
  • Wu X, Xie H, Yu G, Hebert T, Goh BC, Smith SR, Gimble JM. (2009). Expression profile of mRNAs encoding core circadian regulatory proteins in human subcutaneous adipose tissue: correlation with age and body mass index. Int. J. Obes. (Lond). 33:971–977.
  • Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, Bare O, Labow M, Spiegelman B, Stevenson SC. (2006). Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc. Natl. Acad. Sci. U. S. A. 103:14379–14384.
  • Xu C-X, Krager SL, Liao D-F, Tischkau SA. (2010). Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor–mediated regulation of period1 gene. Toxicol. Sci. 115:98–108.
  • Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H. (2000). Role of DBP in the circadian oscillatory mechanism. Mol. Cell Biol. 20:4773–4781.
  • Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T. (2005). Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid- responsive element. J. Biol. Chem. 280:42036–42043
  • Yamamura Y, Yano I, Kudo T, Shibata S. (2010). Time-dependent inhibitory effect of lipopolysaccharide injection on Per1 and Per2 gene expression in the mouse heart and liver. Chronobiol. Int. 27:213–232.
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8:1288–1295.
  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769.
  • Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. (2002). Plasma adiponectin levels in overweight and obese Asians. Obes. Res. 10:1104–1110.
  • Yang X. (2010). A wheel of time: the circadian clock, nuclear receptors, and physiology. Genes Dev. 24:741–747.
  • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. (2006). Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810.
  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789.
  • Yin L, Wu N, Lazar MA. (2010). Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl. Recept. Signal. 8:pe001.
  • Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. (2006). Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α. Diabetes 55:2562–2570.
  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA. (2010). Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16:1152–1156.
  • Zhang K, Kaufman RJ. (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462.
  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. (2006). Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.