Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 4
681
Views
53
CrossRef citations to date
0
Altmetric
Research Article

The Endogenous Melatonin (MT) Signal Facilitates Reentrainment of the Circadian System to Light-Induced Phase Advances by Acting Upon MT2 Receptors

, , &
Pages 415-429 | Received 25 Oct 2011, Accepted 31 Jan 2012, Published online: 10 Apr 2012

REFERENCES

  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Ansari N, Agathagelidis M, Lee C, Korf HW, von Gall C. (2009). Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny. Eur. J. Neurosci. 29:477–489.
  • Arendt J. (2009). Managing jet lag: some of the problems and possible new solutions. Sleep Med. Rev. 13:249–256.
  • Arendt J. (2010). Shift work: coping with the biological clock. Occup. Med. (Lond.) 60:10–20.
  • Arendt J, Skene DJ, Middleton B, Lockley SW, Deacon S. (1997). Efficacy of melatonin treatment in jet lag, shift work and blindness. J. Biol. Rhythms 12:604–617.
  • Aschoff J, Hoffmann K, Pohl H, Wever R. (1975). Re-entrainment of circadian rhythms after phase shifts of the zeitgeber. Chronobiologia 2:23–78.
  • Aton SJ, Herzog ED. (2005). Come together, right…now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534.
  • Boutin JA, Audinot V, Ferry G, Delagrange P. (2005). Molecular tools to study melatonin pathways and actions. Trends Pharmacol. Sci. 26:412–419.
  • Brown TM, Hughes AT, Piggins HD. (2005). Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J. Neurosci. 25:11155–11164.
  • Dubocovich ML. (2007). Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 8( Suppl. 3):34–42.
  • Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI. (1998). Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J. 12:1211–1220.
  • Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. (2005). Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J. Pineal Res. 39:113–120.
  • Foley NC, Tong TY, Foley D, Lesauter J, Welsh DK, Silver R. (2011). Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur. J. Neurosci. 33:1851–1865.
  • Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34:245–253.
  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME. (1993). Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260:238–241.
  • Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH. (2002). The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508.
  • Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM. (1999). Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J. Neurosci. 19: RC11 1–7.
  • Hastings MH, Reddy AB, Maywood ES. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649–651.
  • Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. (2001). Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am. J. Physiol. Cell Physiol. 280:110–118.
  • Jakubcakova V, Oster H, Tamanini F, Cadenas C, Leitges M, van der Horst GTJ, Eichle G. (2007). Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 54:813–829.
  • Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68.
  • Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR. (2003). Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol. Cell Biol. 3:1054–1060.
  • Kiessling S, Eichele G, Oster H. (2010). Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J. Clin. Invest. 120:2600–2609.
  • Kong PJ, Byun JS, Lim SY, Lee JJ, Hong SJ, Kwon KJ, Kim SS. (2008). Melatonin induces Akt phosphorylation through melatonin receptor- and PI3K-dependent pathways in primary astrocytes. Korean J. Physiol. Pharmacol. 12:37–41.
  • Kopp MD, Schomerus C, Dehghani F, Korf HW, Meissl H. (1999). Pituitary adenylate cyclase-activating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade. J. Neurosci. 19:206–219.
  • Korf HW, von Gall C. (2006). Mice, melatonin and the circadian system. Mol. Cell Endocrinol. 252:57–68.
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.
  • Liu C, Reppert SM. (2000). GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 1:123–128.
  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. (1997). Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102.
  • Maywood ES, O'Neill JS, Chesham JE, Hastings MH. (2007). Minireview: the circadian clockwork of the suprachiasmatic nuclei—analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 148:5624–5634.
  • McArthur AJ, Hunt AE, Gillette MU. (1997). Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138:627–634.
  • Paul M, Gray GW, Lieberman HR, Love RJ, Miller JC, Trouborst M, Arendt J. (2011). Phase advance with separate and combined melatonin and light treatment. Psychopharmacology 214:515–523.
  • Paulose JK, Peters JL, Karaganis SP, Cassone VM. (2009). Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes. J. Pineal Res. 46:286–294.
  • Pfeffer M, Müller CM, Mordel J, Meissl H, Ansari N, Deller T, Korf HW, von Gall C. (2009). The mammalian molecular clock controls rhythmic expression of its own pathway components. J. Neurosci. 29:6114–6123.
  • Poirel VJ, Boggio V, Dardente H, Pevet P, Massone-Pevet M, Gauer F. (2003). Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience 120:745–755.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Rajaratnam SM, Arendt J. (2001). Health in a 24-h society. Lancet 358:999–1005.
  • Rawashdeh O, Hudson RL, Stepien I, Dubocovich ML. (2011). Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3H/HeN mice. Chronobiol. Int. 28:31–38.
  • Reddy AB, Field MD, Maywood ES, Hastings MH. (2002). Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22:7326–7330.
  • Refinetti R. (2002). Compression and expansion of circadian rhythm in mice under long and short photoperiods. Integr. Physiol. Behav. Sci. 37:114–127.
  • Reppert SM. (1995). Melatonin madness. Cell 83:1059–1062.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Rivera-Bermudez MA, Masana MI, Brown GM, Earnest DJ, Dubocovich ML. (2004). Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res. 1002:21–27.
  • Schak KM, Harrington ME. (1999). Protein kinase C inhibition and activation phase advances the hamster circadian clock. Brain Res. 840:158–161.
  • Servière J, Lavialle M. (1996). Astrocytes in the mammalian circadian clock: putative roles. In Buijs RM, Kalsbeek A, Romijin, CMA, Pennartz CMA, Mirmiran M (eds.). Hypothalamic integration of circadian rhythms. Amsterdam: Elsevier, 57–73.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM. (1997). Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shen H, Watanabe M, Tomasiewicz H, Rutishauser U, Magnuson T, Glass JD. (1997). Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J. Neurosci. 17:5221–5229.
  • Shen H, Watanabe M, Tomasiewicz H, Glass JD. (2001). Genetic deletions of NCAM and PSA impair circadian function in the mouse. Physiol. Behav. 73:185–193.
  • Spadoni G, Bedini A, Rivara S, Mor M. (2011). Melatonin receptor agonists: new options for insomnia and depression treatment. CNS Neurosci. Ther. 17:733–741.
  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011.
  • Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU. (2003). Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278:718–723.
  • von Gall C, Duffield G, Hastings M, Kopp MD, Dehghani F, Korf HW, Stehle JH. (1998). CREB in the mouse SCN: a molecular integrator coding the phase adjusting stimuli of light, glutamate, PACAP and melatonin for clockwork access. J. Neurosci. 18:10389–10397.
  • von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW. Stehle JH. (2000). Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur. J. Neurosci. 12:964–972.
  • von Gall C, Garabette ML, Kell CA, Frenzel S, Dehghani F, Schumm-Draeger PM, Weaver DR., Korf HW, Hastings MH, Stehle JH. (2002). Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 5:234–238.
  • Williams LM. (1989). Melatonin-binding sites in the rat brain and pituitary mapped by in-vitro autoradiography. J. Mol. Endocrinol. 3:71–75.
  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.