Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 4
408
Views
20
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

The Dual-Oscillator System of Drosophila melanogaster Under Natural-Like Temperature Cycles

, , , , &
Pages 395-407 | Received 12 Sep 2011, Accepted 27 Jan 2012, Published online: 11 Apr 2012

REFERENCES

  • Allada R, Chung BY. (2010). Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72:605–624.
  • Allada R, White NE, So WV, Hall JC, Rosbash M. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804.
  • Aschoff J. (1966). Circadian activity pattern with two peaks. Ecology 47:657–662.
  • Bachleitner W, Kempinger L, Wülbeck C, Rieger D, Helfrich-Förster C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 104:3538–3543.
  • Bhutani S. (2009). Natural entrainment of the Drosophila melanogaster circadian clock. PhD thesis, University of Leicester, Leicester, UK.
  • Boothroyd CE, Wijnen H, Naef F, Saez L, Young MW. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3:e54.
  • Busza A, Murad A, Emery P. (2007). Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J. Neurosci. 27:10722–10733.
  • Collins BH, Rosato E, Kyriacou CP. (2004). Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl. Acad. Sci. U. S. A. 101:1945–1950.
  • Collins BH, Dissel S, Gaten E, Rosato E, Kyriacou CP. (2005). Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 102:19021–19026.
  • Currie J, Goda T, Wijnen H. (2009). Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol. 7:49.
  • Daan S, Albrecht U, van der Horst GT, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ. (2001). Assembling a clock for all seasons: are there M and E oscillators in the genes? J. Biol. Rhythms 16:105–116.
  • Garrity PA, Goodman MB, Samuel AD, Sengupta P. (2010). Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev. 24:2365–2382.
  • Glaser FT, Stanewsky R. (2005). Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15:1352–1363.
  • Glaser WR. (1978). Varianzanalyse. Stuttgart: Gustav Fischer Verlag.
  • Grima B, Chelot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873.
  • Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220.
  • Helfrich-Förster C. (2001). The locomotor activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J. Insect Physiol. 47:877–887.
  • Helfrich-Förster C. (2009). Does the morning and evening oscillator model fit better for flies or mice? J. Biol. Rhythms 24:259–270.
  • Helfrich C, Engelmann W. (1987). Evidences for circadian rhythmicity in the per0 mutant of Drosophila melanogaster. Z. Naturforsch. C 42:1335–1338.
  • Kempinger L, Dittmann R, Rieger D, Helfrich-Förster C. (2009). The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol. Int. 26:151–166.
  • Konopka RJ, Benzer S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 68:2112–2116.
  • Kwon Y, Shen WL, Shim HS, Montell C. (2010). Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J. Neurosci. 30:10465–10471.
  • Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ. (2003). Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6:267–273.
  • Majercak J, Sidote D, Hardin PE, Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and daylength. Neuron 24:219–230.
  • Majercak J, Chen WF, Edery I. (2004). Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell Biol. 24:3359–3372.
  • Pittendrigh CS, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. A 106:333–355.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animal and human beings. Chronobiol. Int. 27:1911–1929.
  • Rieger D, Stanewsky R, Helfrich-Förster C. (2003). Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18:377–391.
  • Rieger D, Shafer OT, Tomioka K, Helfrich-Förster C. (2006). Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26:2531–2543.
  • Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R, Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22:387–399.
  • Rieger D, Peschel N, Dusik V, Glotz S, Helfrich-Förster C. (2012). The ability to entrain to long photoperiods differs between three D. melanogaster wild-type strains and is modified by twilight simulation. J. Biol. Rhythms 27:37–47.
  • Sayeed O, Benzer S. (1996). Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 93:6079–6084.
  • Sehadova H, Glaser FT, Gentile C, Simoni A, Giesecke A, Albert JT, Stanewsky R. (2009). Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64:251–266.
  • Sehgal A, Price JL, Man B, Young MW. (1994). Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606.
  • Shafer OT, Levine JD, Truman JW, Hall JC. (2004). Flies by night: effects of changing daylength on Drosophila's circadian clock. Curr. Biol. 14:424–432.
  • Sheeba V, Kaneko M, Sharma VK, Holmes TC. (2008). The Drosophila circadian pacemaker circuit: Pas De Deux or Tarantella. Crit. Rev. Biochem. Mol. Biol. 43:37–61
  • Stoleru D, Peng Y, Agosto J, Rosbash M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868.
  • Stoleru D, Peng Y, Nawathean P, Rosbash M. (2005). A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438:238–242.
  • Stoleru D, Nawathean P, Fernandez MP, Menet JS, Ceriani MF, Rosbash M. (2007). The Drosophila circadian network is a seasonal timer. Cell 129:207–219.
  • Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP. (2012). Drosophila circadian behavioural rhythms under natural conditions reveal unexpected features. Nature In press.
  • Yoshii T, Sakamoto M, Tomioka K. (2002). A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zool. Sci. 19:841–850.
  • Yoshii T, Heshiki Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T, Tomioka K. (2005). Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur. J. Neurosci. 22:1176–1184.
  • Yoshii T, Fujii K, Tomioka K. (2007). Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms 22:103–114.
  • Yoshii T, Vanin S, Costa R, Helfrich-Förster C. (2009). Synergic entrainment of Drosophila's circadian clock by light and temperature. J. Biol. Rhythms 24:452–464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.