Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 4
104
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Short-Day Response in Djungarian Hamsters of Different Circadian Phenotypes

, , , &
Pages 430-442 | Received 29 Sep 2011, Accepted 01 Feb 2012, Published online: 20 Apr 2012

REFERENCES

  • Aschoff J. (1965). Response curves in circadian periodicity. In Aschoff J (ed.). Circadian clocks. Amsterdam: North-Holland Publishing, 95–111.
  • Beersma DG, van Bunnik BA, Hut RA, Daan S. (2008). Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells. J. Biol. Rhythms 23:362–373.
  • Bernard DJ, Losee-Olson S, Turek FW. (1997). Age-related changes in the photoperiodic response of Siberian hamsters. Biol. Reprod. 57:172–177.
  • Bittman EL, Bartness TJ, Goldman BD, DeVries GJ. (1991). Suprachiasmatic and paraventricular control of photoperiodism in Siberian hamsters. Am. J. Physiol. 260:R90–R101.
  • Brown TM, Piggins HD. (2009). Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod. J. Biol. Rhythms 24:44–54.
  • Carter DS, Goldman BD. (1983). Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology 113:1261–1267.
  • Feoktistova NY. (2008). Dwarf hamsters (Phodopus:Cricetinae): systematics, phylogeography, ecology, physiology, behaviour, chemical communication [in Russian]. Moscow: KMK Scientific Press, 414.
  • Figala J, Hoffmann K, Goldau G. (1973). The annual cycle in the Djungarian hamster Phodopus sungorus Pallas [in German]. Oecologia 12:89–118.
  • Freeman DA, Goldman BD. (1997). Photoperiod nonresponsive Siberian hamsters: effect of age on the probability of nonresponsiveness. J. Biol. Rhythms 12:110–121.
  • Goldman BD. (2001). Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement [review]. J. Biol. Rhythms 16:283–301.
  • Gorman MR, Zucker I. (1997). Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. Am. J. Physiol. 272:R887–R895.
  • Gorman MR, Freeman DA, Zucker I. (1997). Photoperiodism in hamsters: abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. J. Biol. Rhythms 12:122–135.
  • Grone BP, Chang D, Bourgin P, Cao V, Fernald RD, Heller HC, Ruby NF. (2011). Acute light exposure suppresses circadian rhythms in clock gene expression. J. Biol. Rhythms 26:78–81.
  • Hastings MH, Walker AP, Herbert J. (1987). Effect of asymmetrical reductions of photoperiod on pineal melatonin, locomotor activity and gonadal condition of male Syrian hamsters. J. Endocrinol. 114:221–229.
  • Hazlerigg DG, Ebling FJ, Johnston JD. (2005). Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr. Biol. 15:R449–R450.
  • Heath HW, Lynch GR. (1982). Intraspecific differences for melatonin-induced reproductive regression and the seasonal molt in Peromyscus leucopus. Gen. Comp. Endocrinol. 48:289–295.
  • Heldmaier G, Steinlechner S. (1981). Seasonal control of energy-requirements for thermoregulation in the Djungarian hamster (Phodopus-Sungorus), living in natural photoperiod. J. Comp. Physiol. B 142:429–437.
  • Hoffmann K. (1973). Influence of photoperiod and melatonin on testis size, body-weight, and pelage color in Djungarian hamster (Phodopus-Sungorus). J. Comp. Physiol. 85:267–282.
  • Hoffmann K. (1979). Photoperiod, pineal, melatonin and reproduction in hamsters. Prog. Brain Res. 52:397–415.
  • Hoffmann K. (1982). The critical photoperiod in the Djungarian hamster Phodopus sungorus. In Aschoff J, Daan S, Groos G (eds.). Circadian systems: structure and function. Heidelberg: Springer Verlag, 297–304.
  • Hoffmann K, Illnerova H. (1986). Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods. Neuroendocrinology 43:317–321.
  • Hoffmann K, Illnerova H, Vanecek J. (1986). Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic responses in the Djungarian hamster (Phodopus sungorus). Neurosci. Lett. 67:68–72.
  • Hut RA, Beersma DG. (2011). Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366:2141–2154.
  • Illnerova H, Hoffmann K, Vanecek J. (1984). Adjustment of pineal melatonin and N-acetyltransferase rhythms to change from long to short photoperiod in the Djungarian hamster Phodopus sungorus. Neuroendocrinology 38:226–231.
  • Illnerova H, Hoffman K, Vanecek J. (1986). Adjustment of the rat pineal N-acetyltransferase rhythm to change from long to short photoperiod depends on the direction of the extension of the dark period. Brain Res. 362:403–408.
  • Johnston JD. (2005). Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod. J. Neuroendocrinol. 17:459–465.
  • Johnston JD, Ebling FJ, Hazlerigg DG. (2005). Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur. J. Neurosci. 21:2967–2974.
  • Korf HW, Schomerus C, Stehle JH. (1998). The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell Biol. 146:1–100.
  • Larkin JE, Freeman DA, Zucker I. (2001). Low ambient temperature accelerates short-day responses in Siberian hamsters by altering responsiveness to melatonin. J. Biol. Rhythms 16:76–86.
  • Margraf RR, Puchalski W, Lynch GR. (1992). Absence of a daily neuronal rhythm in the suprachiasmatic nuclei of acircadian Djungarian hamsters. Neurosci. Lett. 142:175–178.
  • Meijer JH, Michel S, Vansteensel MJ. (2007). Processing of daily and seasonal light information in the mammalian circadian clock. Gen. Comp. Endocrinol. 152:159–164.
  • Morgan PJ, Barrett P, Howell HE, Helliwell R. (1994). Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem. Int. 24:101–146.
  • Nelson RJ. (1985). Photoperiodic regulation of reproductive development in male prairie voles: influence of laboratory breeding. Biol. Reprod. 33:418–422.
  • Paul MJ, Zucker I, Schwartz WJ. (2008). Tracking the seasons: the internal calendars of vertebrates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:341–361.
  • Pevet P. (2003). Melatonin: from seasonal to circadian signal. J. Neuroendocrinol. 15:422–426.
  • Pittendrigh CS, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents: V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. A Sens. Neural Behav.l Physiol. 106:333–355.
  • Pittendrigh CS, Elliott J, Takamura T. (1984). The circadian component in photoperiodic induction. In Porter R, Collins GM (eds.). Photoperiodic regulation of insect and molluscan hormones. London: Pittman, 26–41.
  • Pohl H. (1984). Differences in responses of the circadian system to light in the Syrian-hamster. Physiol. Zool. 57:509–520.
  • Pohl H. (1985). The circadian system of the Turkish hamster, Mesocricetus brandti: responses to light. Comp. Biochem. Physiol. A Comp. Physiol. 81:613–618.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Prendergast BJ, Freeman DA. (1999). Pineal-independent regulation of photo-nonresponsiveness in the Siberian hamster (Phodopus sungorus). J. Biol. Rhythms 14:62–71.
  • Puchalski W, Lynch GR. (1986). Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. J. Comp. Physiol. A 159:7–11.
  • Puchalski W, Lynch GR. (1988). Daily melatonin injections affect the expression of circadian rhythmicity in Djungarian hamsters kept under a long-day photoperiod. Neuroendocrinology 48:280–286.
  • Puchalski W, Lynch GR. (1994). Photoperiodic time measurement in Djungarian hamsters evaluated from T-cycle studies. Am. J. Physiol. 267:R191–R201.
  • Reiter RJ. (1993). The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664.
  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G. (1993). Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J. Exp. Zool. 267:104–112.
  • Rusak B, Morin LP. (1976). Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters. Biol. Reprod. 15:366–374.
  • Scherbarth F, Steinlechner S. (2008). The annual activity pattern of djungarian hamsters (Phodopus sungorus) is affected by wheel-running activity. Chronobiol. Int. 25:905–922.
  • Scherbarth F, Rozman J, Klingenspor M, Brabant G, Steinlechner S. (2007). Wheel running affects seasonal acclimatization of physiological and morphological traits in the Djungarian hamster (Phodopus sungorus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1368–R1375.
  • Scherbarth F, Petri I, Steinlechner S. (2008). Effects of wheel running on photoperiodic responses of Djungarian hamsters (Phodopus sungorus). J. Comp. Physiol. B 178:607–615.
  • Schöttner K, Weinert D. (2010). Effects of light on the circadian activity rhythm of Djungarian hamsters (Phodopus sungorus) with delayed activity onset. Chronobiol. Int. 27:95–110.
  • Schöttner K, Limbach A, Weinert D. (2011a). Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts. Chronobiol. Int. 28:58–69.
  • Schöttner K, Simonneaux V, Vuillez P, Steinlechner S, Pevet P, Weinert D. (2011b). The daily melatonin pattern in Djungarian hamsters depends on the circadian phenotype. Chronobiol. Int. 28:873–882.
  • Schöttner K, Waterhouse J, Weinert D. (2011c). The circadian body temperature rhythm of Djungarian Hamsters (Phodopus sungorus) revealing different circadian phenotypes. Physiol. Behav. 103:352–358.
  • Steinlechner S, Puchalski W. (2003). Mechanisms for seasonal control of reproduction in small mammals. In Heldmaier G, Werner D (eds.). Environmental signal processing and adaptation. Berlin: Springer, 233–250.
  • Steinlechner S, Baumgartner I, Klante G, Reiter RJ. (1995). Melatonin synthesis in the retina and pineal gland of Djungarian hamsters at different times of the year. Neurochem. Int. 27:245–251.
  • Steinlechner S, Stieglitz A, Ruf T. (2002). Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses. J. Biol. Rhythms 17:248–258.
  • Stetson MH, Watson-Whitmyre M. (1976). Nucleus suprachiasmaticus: the biological clock in the hamster? Science 191:197–199.
  • Sumova A, Travnickova Z, Peters R, Schwartz WJ, Illnerova H. (1995). The rat suprachiasmatic nucleus is a clock for all seasons. Proc. Natl. Acad. Sci. U. S. A. 92:7754–7758.
  • Sumova A, Bendova Z, Sladek M, Kovacikova Z, Illnerova H. (2004). Seasonal molecular timekeeping within the rat circadian clock. Physiol. Res. 53( Suppl 1):S167–S176.
  • Sumova A, Kovacikova Z, Illnerova H. (2007). Dynamics of the adjustment of clock gene expression in the rat suprachiasmatic nucleus to an asymmetrical change from a long to a short photoperiod. J. Biol. Rhythms 22:259–267.
  • Vuillez P, Jacob N, Teclemariam-Mesbah R, Pevet P. (1996). In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neurosci. Lett. 208:37–40.
  • Weinert D, Schöttner K. (2007). An inbred lineage of Djungarian hamsters with a strongly attenuated ability to synchronize. Chronobiol. Int. 24:1065–1079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.