Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 8
305
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Scheduled Feeding Alters the Timing of the Suprachiasmatic Nucleus Circadian Clock in Dexras1-Deficient Mice

&
Pages 965-981 | Received 26 Jan 2012, Accepted 14 Jun 2012, Published online: 28 Aug 2012

REFERENCES

  • Abe H, Kida M, Tsuji K, Mano T. (1989). Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiol. Behav. 45:397–401.
  • Abe H, Honma S, Honma K. (2007). Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R607–R615.
  • Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HY. (2011). miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 20:731–751.
  • Andrade JP, Pereira PA, Silva SM, Sá SI, Lukoyanov NV. (2004). Timed hypocaloric food restriction alters the synthesis and expression of vasopressin and vasoactive intestinal peptide in the suprachiasmatic nucleus. Brain Res. 1022:226–233.
  • Angeles-Castellanos M, Salgado-Delgado R, Rodriguez K, Buijs RM, Escobar C. (2010). The suprachiasmatic nucleus participates in food entrainment: a lesion study. Neuroscience 165:1115–1126.
  • Antle MC, Tse F, Koke SJ, Sterniczuk R, Hagel K. (2008). Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway. Eur. J. Neurosci. 28:2511–2518.
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Biological clocks. Cold Spring Harbor Symp. Quant. Biol. 25:11–28.
  • Aschoff J, Wever R. (1976). Human circadian rhythms: a multioscillatory system. Fed. Proc. 35:2326–2332.
  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog , ED. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8:476–483.
  • Aton SJ, Huettner JE, Straume M, Herzog , ED. (2006). GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc. Natl. Acad. Sci. U. S. A. 103:19188–19193.
  • Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, Abizaid A. (2009). Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 164:351–359.
  • Blum ID, Lamont EW, Abizaid A. (2011). Competing clocks: metabolic status moderates signals from the master circadian pacemaker. Neurosci. Biobehav. Rev. 36:254–270.
  • Boulos Z, Rosenwasser AM, Terman M. (1980). Feeding schedules and the circadian organization of behavior in the rat. Behav. Brain Res. 1:39–65.
  • Butcher GQ, Doner J, Dziema H, Collamore M, Burgoon PW, Obrietan K. (2002). The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 277:29519–29525.
  • Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. (1993). Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 5:368–381.
  • Castillo MR, Hochstetler KJ, Tavernier RJ , Greene DM, Bult-Ito A. (2004). Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R551–R555.
  • Challet E, Pévet P, Vivien-Roels B, Malan A. (1997). Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J. Biol. Rhythms 12:65–79.
  • Challet E, Solberg LC, Turek FW. (1998). Entrainment in calorie-restricted mice: conflicting zeitgebers and free-running conditions. Am. J. Physiol. 274:R1751–R1761.
  • Cheng HYM, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM. (2004). Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43:715–728.
  • Cheng HY, Dziema H, Papp J, Mathur DP, Koletar M, Ralph MR, Penninger JM, Obrietan K. (2006). The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J. Neurosci. 26:12984–12995
  • Cismowski MJ, Takesono A, Ma C, Lizano JS, Xie X, Fuernkranz H, Lanier SM, Duzic E. (1999). Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat. Biotechnol. 17:878–883.
  • Comperatore CA, Stephan FK. (1987). Entrainment of duodenal activity to periodic feeding. J. Biol. Rhythms 2:227–242.
  • Coogan AN, Piggins HD. (2005). Dark pulse suppression of p-ERK and c-Fos in the hamster suprachiasmatic nuclei. Eur. J. Neurosci. 22:158–168.
  • Daan S, Pittendrigh CS. (1976). A functional analysis of circadian pacemakers in nocturnal rodents, II. The variability of phase response curves. J. Comp. Physiol. 106:253–266.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Eskin, A. (1971). Some properties of the system controlling the circadian activity of sparrows. In Menaker M(ed.). Biochronmetry. Washington, DC: National Academy of Sciences, 55–80.
  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. (2000). Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193.
  • Fuller PM, Lu J, Saper CB. (2008). Differential rescue of light- and food-entrainable circadian rhythms. Science 320:1074–1077.
  • Girotti M, Weinberg MS, Spencer RL. (2009). Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. Am. J. Physiol. Endocrinol. Metab. 296:E888–E897.
  • Gooley JJ, Schomer A, Saper CB. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9:398–407.
  • Granados-Fuentes D, Prolo LM, Abraham U, Herzog ED. (2004). The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J. Neurosci. 24:615–619.
  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17:2637–2644.
  • Harrington ME, Nance DM, Rusak B. (1985). Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res. Bull. 15:465–472.
  • Holmes MM, Mistlberger RE. (2000). Food anticipatory activity and photic entrainment in food-restricted BALB/c mice. Physiol. Behav. 68:655–666.
  • Honma K, von Goetz C, Aschoff J. (1983). Effects of restricted daily feeding on freerunning circadian rhythms in rats. Physiol. Behav. 30:905–913.
  • Huhman KL, Albers HE. (1994). Neuropeptide Y microinjected into the suprachiasmatic region phase shifts circadian rhythms in constant darkness. Peptides 15:1475–1478.
  • Jilge B, Stähle H. (1993). Restricted food access and light-dark: impact of conflicting zeitgebers on circadian rhythms of the rabbit. Am. J. Physiol. 264:R708–R715.
  • Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM. (1998). Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats. J. Biol. Rhythms 13:18–29.
  • Koletar MM, Cheng HY, Penninger JM, Ralph MR. (2011). Loss of dexras1 alters nonphotic circadian phase shifts and reveals a role for the intergeniculate leaflet (IGL) in gene-targeted mice. Chronobiol. Int. 28:553–562.
  • Krieger DT. (1974). Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95:1195–1201.
  • Landry GJ, Simon MM, Webb IC, Mistlberger RE. (2006). Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1527–R1534.
  • Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE. (2007). The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J. Biol Rhythms 22:467–478.
  • Lee HS, Nelms JL, Nguyen M, Silver R, Lehman MN. (2003). The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nat. Neurosci. 6:111–112.
  • LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. (2009). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl. Acad. Sci. U. S. A. 106:13582–13587.
  • Marchant EG, Mistlberger RE. (1997). Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res. 765:273–282.
  • Maywood ES, Mrosovsky N, Field MD, Hastings MH. (1999). Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc. Natl. Acad. Sci. U. S. A. 96:15211–15216.
  • Mendoza JY, Dardente H, Escobar C, Pevet P, Challet E. (2004). Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression. Neuroscience 127:529–537.
  • Mendoza J, Graff C, Dardente H, Pevet P, Challet E. (2005). Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J. Neurosci. 25:1514–1522.
  • Mendoza J, Pévet P, Challet E. (2008a). High-fat feeding alters the clock synchronization to light. J. Physiol. 586:5901–5910.
  • Mendoza J, Drevet K, Pévet P, Challet E. (2008b). Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. J. Neuroendocrinol. 20:251–260.
  • Mendoza J, Albrecht U, Challet E. (2010). Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav. 9:467–477.
  • Mistlberger RE. (1994). Circadian food anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18:171–195.
  • Mistlberger RE. (2006). Circadian rhythms: perturbing a food-entrained clock. Curr. Biol. 16:R968–R969.
  • Mistlberger RE. (2011). Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 104:535–545.
  • Moore RY, Eichler VB. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:201–206.
  • Obrietan K, Impey S, Storm DR. (1998). Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1:693–700.
  • Ohta H, Yamazaki S, McMahon DG. (2005). Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8:267–269.
  • Pando MP, Morse D, Cermakian N, Sassone-Corsi P. (2002). Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110:107–117.
  • Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T, Yamazaki S. (2009). Robust food anticipatory activity in BMAL1-deficient mice. PLoS ONE 4:e4860.
  • Pittendrigh CS. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:16–54.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Rashotte ME, Stephan FK. (1996). Coupling between light- and food-entrainable circadian oscillators in pigeons. Physiol. Behav. 59:1005–1010.
  • Rosenwasser AM, Boulos Z, Terman M. (1981). Circadian organization of food intake and meal patterns in the rat. Physiol. Behav. 27:33–39.
  • Stephan FK. (1986a). The role of period and phase in interactions between feeding- and light-entrainable circadian rhythms. Physiol. Behav. 36:151–158.
  • Stephan FK. (1986b). Coupling between feeding- and light-entrainable circadian pacemakers in the rat. Physiol. Behav. 38:537–544.
  • Stephan FK. (1986c). Interaction between light- and feeding-entrainable circadian rhythms in the rat. Physiol. Behav. 38:127–133.
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U. S. A. 69:1583–1586.
  • Stephan FK, Swann JM, Sisk CL. (1979a). Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol. 25:346–363.
  • Stephan FK, Swann JM, Sisk CL. (1979b). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol. 25:545–554.
  • Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horst G, Yasui A, Inouye ST, Fujimori A, Ohhata T, Araki R, Abe M. (2003). Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 110:1–6.
  • Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW. (1997). Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am. J. Physiol. 273:R1957–R1964.
  • Yannielli PC, Harrington ME. (2001). The neuropeptide Y Y5 receptor mediates the blockade of “photic-like” NMDA-induced phase shifts in the golden hamster. J. Neurosci. 21:5367–5373.
  • Yannielli PC, Molyneux PC, Harrington ME, Golombek DA. (2007). Ghrelin effects on the circadian system of mice. J. Neurosci. 27:2890–2895.
  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. (2006). Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494:528–548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.