Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 10
476
Views
30
CrossRef citations to date
0
Altmetric
Research Papers

Circadian Oscillations of Molecular Clock Components in the Cerebellar Cortex of the Rat

, &
Pages 1289-1299 | Received 25 May 2012, Accepted 02 Aug 2012, Published online: 06 Nov 2012

REFERENCES

  • Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Honma K. (1998). Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene Clock, in the suprachiasmatic nucleus of rats. Neurosci. Lett. 258:93–96
  • Abe M, Herzog , Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GDED. (2002). Circadian rhythms in isolated brain regions. J. Neurosci. 22:350–356.
  • Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, Shibata S. (1999). Modulation of mPer1 gene expression by anxiolytic drugs in mouse cerebellum. Br. J. Pharmacol. 128:1616–1622.
  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Bass J, Takahashi JS. (2010). Circadian integration of metabolism and energetics. Science 330:1349–1354.
  • Challet E, Mendoza J. (2010). Metabolic and reward feeding synchronises the rhythmic brain. Cell Tissue Res. 341:1–11.
  • Farnell YZ, Allen GC, Nahm SS, Neuendorff N, West JR, Chen WJA, Earnest DJ. (2008). Neonatal alcohol exposure differentially alters clock gene oscillations within the suprachiasmatic nucleus, cerebellum, and liver of adult rats. Alcohol. Clin. Exp. Res. 32:544–552.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Green CB, Takahashi JS, Bass J. (2008). The meter of metabolism. Cell 134:728–742.
  • Guilding C, Piggins HD. (2007). Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur. J. Neurosci. 25:3195–3216.
  • Hastings MH, Maywood ES, O'Neill JS. (2008). Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18:R805–R815.
  • Ito M. (2002). Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann. N. Y. Acad. Sci. 978:273–288
  • Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH. (2010). Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20:377–388.
  • Kim JB, Lee SY, Kim HW, Park EJ, Kim J, Kim SJ, So I, Jeon JH. (2009). Optimized immunohistochemical analysis of cerebellar purkinje cells using a specific biomarker, calbindin d28k. Korean J. Physiol. Pharmacol. 13:373–378.
  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna M H, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. (1997). Positional cloning of the mouse circadian clock gene. Cell 89:641–653.
  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U. (1997). The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16:6762–6771.
  • Lowrey PL, Takahashi JS. (2011). Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 74:175–230.
  • Matsui D, Takekida S, Okamura H. (2005). Molecular oscillation of Per1 and Per2 genes in the rodent brain: an in situ hybridization and molecular biological study. Kobe J. Med. Sci. 51:85–93.
  • Mendoza J, Pévet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. (2010). The cerebellum harbors a circadian oscillator involved in food anticipation. J. Neurosci. 30:1894–1904.
  • Miyamoto Y, Sancar A. (1998). Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl. Acad. Sci. U. S. A. 95:6097–6102.
  • Mohawk JA, Takahashi JS. (2011). Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 34:349–358.
  • Moore RY, Eichler VB. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:201–206.
  • Møller M, Baeres F. (2002). The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 309:139–150.
  • Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K. (1999). Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci. Lett. 267:69–72.
  • Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M, Hoeijmakers JHJ, van der Horst GTJ. (1999). Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286:2531–2534.
  • Onishi H, Yamaguchi S, Yagita K, Ishida Y, Dong X, Kimura H, Jing Z, Ohara H, Okamura H. (2002). Rev-erbα gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus. J. Neurosci. Res. 68:551–557.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Preitner N, Damiola F, Luis Lopez M, Zakany J, Duboule D, Albrecht U, Schibler U. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260.
  • Rath MF, Munoz E, Ganguly S, Morin F, Shi Q, Klein DC, Møller M. (2006). Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. J. Neurochem. 97:556–566.
  • Rath MF, Bailey MJ, Kim JS, Coon SL, Klein DC, Møller M. (2009). Developmental and daily expression of the Pax4 and Pax6 homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells. J. Neurochem. 108:285–294.
  • Rath MF, Rohde K, Fahrenkrug J, Møller M. (2012). Circadian clock components in the rat neocortex: daily dynamics, localization and regulation. Brain Struct. Funct. Epub ahead of print. doi: 10.1007/s00429-012-0415-4.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Saper CB, Lu J, Chou TC, Gooley J. (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–157.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM. (1997). Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shearman LP, Zylka MJ, Reppert SM, Weaver DR. (1999). Expression of basic helix-loop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 89:387–397.
  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. (2000). Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019.
  • Shieh KR. (2003). Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neuroscience 118:831–843.
  • Stein JF. (1986). Role of the cerebellum in the visual guidance of movement. Nature 323:217–221.
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U. S. A. 69:1583–1586.
  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele, Lee CC. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011.
  • Takumi T, Matsubara C, Shigeyoshi Y, Taguchi K, Yagita K, Maebayashi Y, Sakakida Y, Okumura K, Takashima N, Okamura H. (1998). A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3:167–176.
  • Verwey M, Amir S. (2009). Food-entrainable circadian oscillators in the brain. Eur. J. Neurosci. 30:1650–1657.
  • Vitaterna M, King D, Chang A, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. (1994). Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725.
  • Vrang N, Larsen PJ, Møller M, Mikkelsen JD. (1995). Topographical organization of the rat suprachiasmatic-paraventriocular projection. J. Comp. Neurol. 353:585–603.
  • Welsh DK, Logothetis DE, Meister M, Reppert SM. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706.
  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. (2004). Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol. Biol. 5:18.
  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr , Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JSED. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U. S. A. 101:5339–5346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.