Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 10
94
Views
1
CrossRef citations to date
0
Altmetric
Short Communications

Influence of Photoperiod in Accelerating the Reentrainment in Drosophila

, , &
Pages 1405-1411 | Received 29 May 2012, Accepted 05 Sep 2012, Published online: 06 Nov 2012

REFERENCES

  • Arai T, Watari Y. (1997). Effects of photoperiod and aging on locomotor activity rhythms in the onion fly, Delia antiqua. J. Insect Physiol. 43:567–576.
  • Aschoff J, Wever R. (1965). Circadian rhythms of finches in light-dark cycles with interposed twilights. Comp. Biochem. Physiol. 16:507–514.
  • Daan S, Pittendrigh C. (1976). A functional analysis of circadian pacemakers in nocturnal rodents II. The variability of phase response curves. J. Comp. Physiol. 106:253–266.
  • Daan S, Aschoff J. (2001). The entrainment of circadian systems. In Takahashi J, Turek F, Moore R (eds). Handbook of behavioral neurobiology. Vol. 12. Circadian clocks. New York: Kluwer/Plenum, pp. 7–43.
  • Evans J, Elliot J, Gorman M. (2009). Dim nighttime illumination accelerates adjustment to timezone travel in animal model. Curr. Biol. 19:156–157.
  • Frank D, Evans J, Gorman M. (2010). Time-dependent effects of dim light at night on re-entrainment and masking of hamster activity rhythms. J. Biol. Rhythms 25:102–115.
  • Grima B, Chélot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873.
  • Gonze D, Goldbeter A. (2006). Circadian rhythms and molecular noise. Chaos 16:026110.
  • Johnson C, Elliot J, Foster R. (2003). Entrainment of circadian programs. Chronobiol. Int. 20:741–774.
  • Joshi D, Gore A. (1999). Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Indian J. Exp. Biol. 37:718–724.
  • Kempinger L, Dittmann R, Rieger D, Helfrich-Forster C. (2009). The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol. Int. 26:151–166.
  • Kenny N, Saunders D. (1991). Adult locomotor rhythmicity as “hands” of the maternal photoperiodic clock regulating larval diapause in the blowfly, Calliphora vicina. J. Biol. Rhythms 6:217–233.
  • Keny V, Vanlalnghaka C, Hakim S, Barnabas R, Joshi D. (2007). Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica. Chronobiol. Int. 24:821–834.
  • Khare P, Keny V, Vanlalnghaka C, Satralkar M, Kasture M, Barnabas R, Joshi D. (2004). Effects of temperature, photoperiod and light intensity on the eclosion rhythm of high altitude Himalayan strain of Drosophila ananassae. Chronobiol. Int. 21:353–365.
  • Koga M, Ushirogawa H, Tomioka K. (2005). Photoperiodic modulation of circadian rhythms in the cricket, Gryllus bimaculatus. J. Insect Physiol. 51:681–690.
  • Liu T, Borjigin J. (2005). Reentrainment of the circadian pacemaker through three distinct stages. J. Biol. Rhythms 20:441–450.
  • Majercak J, Sidote D, Hardin P, Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24:219–230.
  • Meijer J, De Vries M. (1995). Light induced phase shifts in onset and offset of running-wheel activity in the Syrian hamster. J. Biol. Rhythms 10:4–16.
  • Mrosovsky N. (1999). Masking: history, definitions and measurement. Chronobiol. Int. 16:415–429.
  • Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y. (2003). An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci. 23:6141–6151.
  • Nair K, Selvaraj R, Farid T, Nanthakumar K. (2010). Antidromic His capture during entrainment of orthodromic AVRT. Pacing Clin. Electrophysiol. 33:1153–1156.
  • Page T, Mans C, Griffeth G. (2001). History dependence of circadian pacemaker period in the cockroach. J. Insect Physiol. 47:1085–1093.
  • Pittendrigh C. (1981). Circadian organization and the photoperiodic phenomena. In Follet B, Follet D (Eds.). Biological clocks in seasonal reproductive cycles. Bristol: Scientenhnica, pp. 1–35.
  • Pittendrigh C, Daan S. (1976). A functional analysis of a circadian pacemaker in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. A 106:333–355.
  • Pittendrigh C, Kyner W, Takamura T. (1991). The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J. Biol. Rhythms 6:299–313.
  • Portaluppi F, Smolensky M, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Reddy A, Field M, Maywood E, Hastings M. (2002). Differential resynchronization of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22:7326–7330.
  • Reiger D, Stanewsky R, Helfrich-Forster C. (2003). Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18:377–391.
  • Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R, Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22:387–399.
  • Rieger D, Peschel N, Dusik V, Glotz S, Helfrich-Förster C. (2012). The ability to entrain to long photoperiods differs between 3 Drosophila melanogaster wild-type strains and is modified by twilight simulation. J. Biol. Rhythms 27:37–47.
  • Satralkar M, Khare P, Keny V, Chhakchhuak V, Kasture M, Shivagaje A, Iyyer S, Barnabas R, Joshi D. (2007). Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae. Chronobiol. Int. 24:389–405.
  • Saunders D. (2002). Circadian rhythms in photoperiodism. In Steel C, Vafopoulou X, Lewis R (Eds.). Insect clocks. Amsterdam: Elsevier Science, pp.339–376.
  • Shafer O, Levine J, Truman J, Hall J. (2004). Flies by night: effects of changing day length on Drosophila's circadian clock. Curr. Biol. 14:424–432.
  • Sharma S, Thakurdas P, Sinam B, Joshi D. (2012). Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana. Chronobiol. Int. 29:157–165.
  • Sinam B, Sharma S, Thakurdas P, and Dilip Joshi. (2012). Bright photophase accelerates reentrainment after experimental jetlag in Drosophila. Naturwissenschaften 99:575–578.
  • Stoleru D, Peng Y, Agosto J, Rosbash M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868.
  • Thakurdas P, Sharma S, Singh B, Vanlalhriatpuia K, Joshi D. (2011). Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Chronobiol. Int. 28:390–396.
  • Tomioka K, Sakamoto T. (2006). History dependence of insect rhythms. Formosan Entomol. 26:87–97.
  • Tomioka K, Uwozumi K, Matsumoto N. (1997). Light cycle given during development affect freerunning period of circadian locomotor rhythm of period mutants in Drosophila melanogaster. J. Insect Physiol. 43:297–305.
  • Yoshii T, Funada Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T, Tomioka K. (2004). Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J. Insect Physiol. 50:479–488.
  • Yoshi T, Hermann C, Helfrich-Forster C. (2010). Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature. J. Biol. Rhythms 25:387–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.