Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 10
597
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Differential Patterns in the Periodicity and Dynamics of Clock Gene Expression in Mouse Liver and Stomach

, , , , , , , & show all
Pages 1300-1311 | Received 02 Jun 2012, Accepted 21 Aug 2012, Published online: 06 Nov 2012

REFERENCES

  • Agostino PV, Harrington ME, Ralph MR, Golombek DA. (2009). Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol. Int. 26:126–133.
  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544–556.
  • Cailotto C, Lei J, van der Vliet J, van Heijningen C, van Eden CG, Kalsbeek A, Pévet P, Buijs RM. (2009). Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4:e5650.
  • Carneiro BT, Araujo JF. (2009). The food-entrainable oscillator: a network of interconnected brain structures entrained by humoral signals? Chronobiol. Int. 26:1273–1289.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Edery I. (2000). Circadian rhythms in a nutshell. Physiol. Genomics 3:59–74.
  • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. (2002). The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iϵ. J. Biol. Chem. 277:17248–17254.
  • Filipski E, King VM, Etienne MC, Li XM, Claustrat B, Granda TG. (2004). Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R844–R851.
  • Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. (2012). Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278.
  • Hastings MH, Reddy AB, Maywood ES. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649–661.
  • Herzog ED., (2007). Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8:790–802.
  • Hoffman AE, Zheng T, Ba Y, Zhu Y. (2008). The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol. Cancer Res. 6:1461–1468.
  • Hoogerwerf WA. (2010). Role of clock genes in gastrointestinal motility. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G549–G555.
  • Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. (2007). Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133:1250–1260.
  • Hoogerwerf WA, Sinha M, Conesa A, Luxon BA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Cassone VM. (2008). Transcriptional profiling of mRNA expression in the mouse distal colon. Gastroenterology 135:2019–2029.
  • Hoogerwerf WA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Bartell PA, Cassone VM. (2010). Rhythmic changes in colonic motility are regulated by period genes. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G143–G150.
  • Hosoda H, Kojima M, Kangawa K. (2006). Biological, physiological, and pharmacological aspects of ghrelin. J. Pharmacol. Sci. 100:398–410.
  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell 28:855–867.
  • Lee HS, Billings HJ, Lehman MN. (2003). The suprachiasmatic nucleus: a clock of multiple components. J. Biol. Rhythms 18:435–449.
  • Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A, Marktl W, Ekmekcioglu C. (2009). Clock genes display rhythmic expression in human hearts. Chronobiol. Int. 26:621–636.
  • Lemmer B. (2009). Discoveries of rhythms in human biological functions: a historical review. Chronobiol. Int. 26:1019–1068.
  • LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. (2009). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl. Acad. Sci. U. S. A. 106:13582–13587.
  • Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA. (2008). Redundant function of REV-ERBalpha and beta and nonessential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4:e1000023.
  • Liu S, Cai Y, Sothern RB, Guan Y, Chan P. (2007). Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol. Int. 24:793–820.
  • Mazzoccoli G. (2011). The timing clockwork of life. J. Biol. Regul. Homeost. Agents 25:137–143.
  • Mazzoccoli G, Giuliani F, Sothern RB. (2011). A methodology to evaluate dynamics and periodicity of hormone secretion. J. Biol. Regul. Homeost. Agents 25:231–238.
  • Mazzoccoli G, Pazienza V, Vinciguerra M. (2012). Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol. Int. 29:227–251.
  • Mendoza J, Challet E. (2009). Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neuroscientist 15:477–488.
  • Mistlberger RE. (2011). Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 104:535–545.
  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. (2004). Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705.
  • Pardini L, Kaeffer B, Trubuil A, Bourreille A, Galmiche JP. (2005). Human intestinal circadian clock: expression of clock genes in colonocytes lining the crypt. Chronobiol. Int. 22:951–61.
  • Polidarová L, Soták M, Sládek M, Pacha J, Sumová A. (2009). Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol. Int. 26:607–620.
  • Polidarová L, Sládek M, Soták M, Pácha J, Sumová A. (2011). Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol. Int. 28:204–215.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260.
  • Reppert SM, Weaver DR. (2001). Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63:647–676.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Scheving LA. (2000). Biological clocks and the digestive system. Gastroenterology 119:536–549.
  • Schibler U, Sassone-Corsi P. (2002). A web of circadian pacemakers. Cell 111:919–922.
  • Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O'Neill J, Pácha J, Sumová A. (2007). Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133:1240–1249.
  • Smith KD, Fu MA, Brown EJ. (2009). Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J. Cell Biol. 187:15–23.
  • Soták M, Polidarová L, Musílková J, Hock M, Sumová A, Pácha J. (2011). Circadian regulation of electrolyte absorption in the rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G1066–G1074.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Takahashi JS, Hong HK, Ko CH, McDearmon EL. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9:764–775.
  • Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. (2009). Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U. S. A. 106:21453–21458.
  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. (2004). Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol. Biol. 5:18.
  • Yang X. (2010). A wheel of time: the circadian clock, nuclear receptors, and physiology. Genes Dev. 24:741–747.
  • Yu W, Nomura M, Ikea M. (2002). Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Commun. 290:933–941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.