Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
1,068
Views
66
CrossRef citations to date
0
Altmetric
Research Papers

Linking Oxygen to Time: The Bidirectional Interaction Between the Hypoxic Signaling Pathway and the Circadian Clock

, , , , , , , , , & show all
Pages 510-529 | Received 23 Sep 2012, Accepted 25 Nov 2012, Published online: 20 Feb 2013

REFERENCES

  • Antle MC, Mistlberger RE. (2000). Circadian clock resetting by sleep deprivation without exercise in the syrian hamster. J. Neurosci. 20:9326–9332.
  • Balsalobre A, Damiola F, Schibler U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937.
  • Birk DM, Barbato J, Mureebe L, Chaer RA. (2008). Current insights on the biology and clinical aspects of vegf regulation. Vasc. Endovasc. Surg. 42:517–530.
  • Bosco G, Ionadi A, Panico S, Faralli F, Gagliardi R, Data P, Mortola JP. (2003). Effects of hypoxia on the circadian patterns in men. High Alt. Med. Biol. 4:305–318.
  • Bozek K, Kielbasa SM, Kramer A, Herzel H. (2008). Promoter analysis of mammalian clock controlled genes. Genome Inform. 18:65–74.
  • Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C, Kramer A, Herzel H. (2009). Regulation of clock-controlled genes in mammals. PLoS ONE 4:e4882.
  • Bruick RK. (2003). Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17:2614–2623.
  • Cahill GM. (2002). Clock mechanisms in zebrafish. Cell Tissue Res. 309, 27–34.
  • Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L. (2000). Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol. Cell. Biol. 20:402–415.
  • Cermakian N, Pando MP, Thompson CL, Pinchak AB, Selby CP, Gutierrez L, Wells DE, Cahill GM, Sancar A, Sassone-Corsi P. (2002). Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr. Biol. 12:844–848.
  • Chen-Goodspeed M, Cheng CL. (2007). Tumor suppression and circadian function. J. Biol. Rhythms 22:291–298.
  • Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. (2001). Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 15:2613–2622.
  • Chomczynski P, Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Coste O, Beaumont M, Batejat D, Beers PV, Touitou Y. (2004). Prolonged mild hypoxia modifies human circadian core body temperature and may be associated with sleep disturbances. Chronobiol. Int. 21:419–433.
  • Coste O, Beaumont M, Batejat D, Beers PV, Touitou Y. (2005a). Effects of mild hypoxia on circadian time structure during long duration flights in man. Strategies to maintain combat readiness during extended deployments—a human systems approach. Strategies to Maintain Combat Readiness during Extended Deployments – A Human SystemsApproach (pp. 25-1 – 25-14). Meeting Proceedings RTO-MP-HFM-124, 25.
  • Coste O, Beers PV, Bogdan A, Charbuy H, Touitou Y. (2005b). Hypoxic alterations of cortisol circadian rhythm in man after simulation of a long duration flight. Steroids 70:803–810.
  • Edgar DM, Dement WC. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am. J. Physiol. Regul. Integr. Comp. Physiol. 261:R928–R933.
  • Egg M, Tischler A, Schwerte T, Sandbichler A, Folterbauer C, Pelster B. (2012). Endurance exercise modifies the circadian clock in zebrafish (Danio rerio) temperature independently. Acta Physiol (Oxf.) 205:167–176.
  • Feder ME, Booth DT. (1992). Hypoxic boundary layers surrounding skin-breathing aquatic amphibians: occurrence, consequences and organismal responses. J. Exp. Biol. 166:237–251.
  • Fink T, Kazlauskas A, Poellinger L, Ebbesen P, Zachar V. (2002). Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 99:2077–2083.
  • Firsov D, Bonny O. (2010). Circadian regulation of renal function. Kidney Int. 78:640–645.
  • Fujita Koyama Y, Higashimoto M, Ono K, Ono T, Watanabe K, Yoshimoto N, Momma T, Saito M, Sugeno H, Sassa M, Ishigame T, Sakamoto W, Abe N, Yazawa T, Miyamoto K, Tachibana K, Iwadate M, Ohtake T, Takebayashi J, Takenoshita S.. (2010). Regulation of circadian rhythm of human vascular endothelial growth factor by circadian rhythm of hypoxia inducible factor-1: implication for clinical use as anti-angiogenic therapy. Ann. Cancer Res. Ther. 18:28–36.
  • Ghorbel MT, Coulson JM, Murphy D. (2003). Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and clock in transcriptional activation of the vasopressin gene. Mol. Cell. Neurosci. 22:396–404.
  • Gong B, Liang D, Chew TG, Ge R. (2004). Characterization of the zebrafish vascular endothelial growth factor A gene: comparison with VEGF-A genes in mammals and Fugu. Biochim. Biophys. Acta 1676:33–40.
  • Gooley JJ, Schomer A, Saper CB. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9:398–407.
  • Hirayama J, Cardone L, Doi M, Sassone-Corsi P. (2005). Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc. Nat. Acad. Sci. U. S. A. 102:10194–10199.
  • Hochachka PW, Somero GN. (2002). Biochemical adaptation: mechanism and process in physiological evolution. New York: Oxford University Press. 480 pp.
  • Hogenesch JB, Gu YZ, Jain S, Bradfield CA. (1998). The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. U. S. A. 95:5474–5479.
  • Hopfl G, Ogunshola O, Gassmann M. (2004). HIFs and tumors—causes and consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R608–R623.
  • Jacob E, Drexel M, Schwerte T, Pelster B.(2002). Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. Am. J. Physiol Regul. Integr. Comp. Physiol 283:R911–R917.
  • Jensen L.D, Cao Z, Nakamura M, Yang Y, Bräutigam L, Andersson P, Zhang Y, Wahlberg E, Länne T, Hosaka K, Cao Y. (2012). Opposing effects of circadian clock genes Bmal1 and Period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep. 2:231–241.
  • Joseph V, Mamet J, Lee F, Dalmaz Y, Reeth O. (2002). Prenatal hypoxia impairs circadian synchronisation and response of the biological clock to light in adult rats. J. Physiol. 543:387–395.
  • Kajimura S, Aida K, Duan C. (2006). Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol. Cell. Biol. 26:1142–1155.
  • Kimura H, Weisz A, Ogura T, Hitomi Y, Kurashima Y, Hashimoto K, D'Acquisto F, Makuuchi M, Esumi H. (2001). Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem. 276:2292–2298.
  • Kopp R, Koblitz L, Egg M, Pelster B. (2011). HIF signaling and overall gene expression changes during hypoxia and prolonged exercise differ considerably. Physiol. Genomics 43:506–516.
  • Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, Shimeno H. (2003). A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 63:7277–7283.
  • Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. (2005). Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 3:e351.
  • Land SC. (2004). Hochachka's “hypoxia defense strategies” and the development of the pathway for oxygen. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139:415–433.
  • Lee CC. (2006). Tumor suppression by the mammalian period Genes. Cancer Causes Control 17:525–530.
  • Lee JW, Bae S.-H, Jeong J.-W, Kim S.-H, Kim K.-W. (2004). Hypoxia-inducible factor (HIF-1)a: its protein stability and biological functions. Exp. Mol. Med. 36:1–12.
  • Liu Y, Merrow M, Loros JJ, Dunlap JC. (1998). How temperature changes reset a circadian oscillator. Science 281:825–829.
  • Martorell L, Gentile M, Rius J, Rodriguez C, Crespo J, Badimon L, Martinez-Gonzalez J. (2009). The hypoxia-inducible factor 1/NOR-1 axis regulates the survival response of endothelial cells to hypoxia. Mol. Cell. Biol. 29:5828–5842.
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259.
  • Miyamura N, Hirayama J, Sawanobori K, Tamaru T, Asaoka Y, Honda R, Yamamoto T, Uno H, Takamatsu K, Nishina H. (2009). CLOCK:BMAL-independent circadian oscillation of zebrafish cryptochrome1a gene. Biol. Pharmacol. Bull. 32:1183–1187.
  • Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. (2002). Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J. Biol. Chem. 277:47014–47021.
  • Mortola JP. (2007). Hypoxia and circadian patterns. Respir. Physiol. Neurobiol. 158:274–279.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340.
  • Nardinocchi L, Puca R, Sacchi A, D'Orazi G. (2009). Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Mol Cancer 8:1–9.
  • Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. U. S. A. 98:10178–10183.
  • Pando MP, Sassone-Corsi P. (2002). Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. BioEssays 24:419–426.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH. (2009). Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 29:4527–4538.
  • Rombough PJ. (1992). Intravascular oxygen tensions in cutaneously respiring rainbow trout (Oncorhynchus mykiss) larvae. Comp. Biochem. Physiol. 101A:23–27.
  • Sahar S, Sassone-Corsi P. (2009). Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9:886–896.
  • Semenza G.L. (2012). Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends in Molecular Medicine September 2012, Vol. 18, No. 9. 534–542.
  • Schwerte T, Uberbacher D, Pelster B. (2003). Non-invasive imaging of blood cell concentration and blood distribution in zebrafish Danio rerio incubated in hypoxic conditions in vivo. J. Exp. Biol. 206:1299–1307.
  • Seifert EL, Mortola JP. (2002). Circadian pattern of ventilation during prolonged hypoxia in conscious rats. Respir. Physiol. Neurobiol. 133:23–34.
  • Semenza GL, Wang GL. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–5454.
  • Shams I, Avivi A, Nevo E. (2004). Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1{alpha}. Proc. Natl. Acad. Sci. U. S. A. 101:9698–9703.
  • Shams I, Nevo E, Avivi A. (2005). Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J. 19:307–309.
  • Shi Y.-H, Fang W.-G. (2004). Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol. 10:1082–1087.
  • Sodhi A, Montaner S, Miyazaki H, Gutkind JS. (2001). MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem. Biophys. Res. Commun. 287:292–300.
  • Touitou Y, Coste O, Dispersyn G, Pain L. (2010). Disruption of the circadian system by environmental factors: effects of hypoxia, magnetic fields and general anesthetics agents. Adv. Drug Deliv. Rev. 62:928–945.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. (2005). Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045.
  • Uchida Y, Shimomura T, Hirayama J, Nishina H. (2011). Light, reactive oxygen species, and magnetic fields activate ERK/MAPK signaling pathways. Appl. Magn. Res. 42:69–77.
  • Vallone D, Gondi SB, Whitmore D, Foulkes NS. (2004). E-box function in a period gene repressed by light.Proc. Natl. Acad. Sci. U. S. A. 101:4106–4111.
  • Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU. (2004). Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18:1462–1464.
  • Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA. (2004). Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14:2289–2295.
  • Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL. (2009). Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl. Acad. Sci. U. S. A. 106:4260–4265.
  • Yamanaka Y, Honma Ki, Hashimoto S, Takasu N, Miyazaki T, Honma S. (2006). Effects of physical exercise on human circadian rhythms. Sleep Biol. Rhythms 4:199–206.
  • Yang X, Wood PA, Oh E.-Y, Du-Quiton J, Ansell CM, Hrushesky WJ. M. (2008). Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res. Treat. 117:423–431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.