Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
220
Views
34
CrossRef citations to date
0
Altmetric
Research Papers

Photoperiodic Variation in CD45-Positive Cells and Cell Proliferation in the Mediobasal Hypothalamus of the Soay Sheep

, , , &
Pages 548-558 | Received 26 Jun 2012, Accepted 01 Nov 2012, Published online: 20 Feb 2013

REFERENCES

  • Amrein I, Dechmann DK, Winter Y, Lipp HP. (2007). Absent or low rate of adult neurogenesis in the hippocampus of bats (Chiroptera). PLoS ONE 2:e455.
  • Argo CM, Smith JS, Kay RNB. (1999). Seasonal changes of metabolism and appetite in Soay rams. Anim. Sci. 69:191–202. .
  • Ayoub AE, Salm AK. (2003). Increased morphological diversity of microglia in the activated hypothalamic supraoptic nucleus. J. Neurosci. 23:7759–7766.
  • Bartkowska K, Djavadian RL, Taylor JR, Turlejski K. (2008). Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla). Eur. J. Neurosci. 27:1710–1721.
  • Benoit C-E, Bastianetto S, Brouillette J, Tse YC, Boutin JA, Delagrange P, Wong TP, Sarret P, Quiron R. (2010). Loss of quinone reductase 2 function selectively facilitates learning behaviors. J. Neurosci. 30:12690–12700.
  • Bernal J, Nunez J. (1995). Thyroid hormones and brain development. Eur. J. Endocrinol. 133:390–398.
  • Bird CM, Burgess N. (2008). The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9:182–194.
  • Bittman EL, Weaver DR. (1990). The distribution of melatonin binding sites in neuroendocrine tissues of the ewe. Biol. Reprod. 43:986–993.
  • Bolborea M, Laran-Chich M-P, Rasri K, Hildebrand H, Govitaprong P, Simonneaux V, Pevet P, Steinlechner S, Klosen P. (2011). Melatonin controls photoperiodic changes in tanycyte vimentin and neural cell adhesion molecule expression in the Djungarian hamster (Phodopus sungorus). Endocrinology 152:3781–3883.
  • Brus M, Meurisse M, Gheusi G, Keller M, Lledo PM, Levy F. (2013). Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J. Comp. Neurol. 521:169–188.
  • Cogé F, Guenin SP, Fery I, Migaud M, Devavry S, Slugocki C, Legros C, Ouvry C, Cohen W, Renault N, Nosjean O, Malpaux B, Delagrange P, Boutin JA. (2009). The end of a myth: cloning and characterisation of the ovine MT2 receptor. Br. J. Pharacol. 158:1248–1262.
  • Dardente H, Wyse CA, Dupre SM, Birnie MJ, Loudon ASIL, Lincoln GA, Hazlerigg DG. (2010). A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20:2193–2198.
  • Davis EJ, Foster TD, Thomas WE. (1994). Cellular forms and functions of brain microglia. Brain Res. Bull. 34:73–78.
  • Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M. (2006). Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129:2394–2403.
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313–1317.
  • Fowler CD, Liu Y, Ouimet C, Wang Z. (2002). The effects of social environment on adult neurogenesis in the female prairie vole. J. Neurobiol. 51:115–128.
  • Galea LA, Perrot-Sinal TS, Kavaliers M, Ossenkopp KP. (1999). Relations of hippocampal volume and dentate gyrus width to gonadal hormone levels in male and female meadow voles. Brain Res. 821:383–391.
  • Galimi F, Summers RG, van Praag H, Verma IM, Gage FH. (2005). A role for bone marrow-derived cells in the vasculature of noninjured CNS. Blood 105:2400–2402.
  • Giulian D, Baker TJ. (1986). Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6:2163–2178.
  • Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG. (2008). Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 18:1147–1152.
  • Hawken PA, Jorre TJ, Rodger J, Esmaili T, Blache D, Martin GB. (2009). Rapid induction of cell proliferation in the adult female ungulate brain (Ovis aries) associated with activation of the reproductive axis by exposure to unfamiliar males. Biol. Reprod. 80:1146–1151.
  • Hazlerigg DG, Lincoln GA. (2011). Hypothesis: cyclical histogenesis is the basis of circannual timing. J. Biol. Rhythms 26:471–485.
  • Hazlerigg D, Loudon A. (2008). New insights into ancient seasonal life timers. Curr. Biol. 18:R795–R804.
  • Hewicker-Trautwein M, Schultheis G. (1994). Lectin labelling of amoeboid and ramified microglial cells in the telencephalon of ovine fetuses with the B4 isolectin from Griffonia simplicifolia. J. Comp. Pathol. 111:21–31.
  • Huang L, DeVries GJ, Bittman EL. (1998). Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J. Neurobiol. 36:410–420.
  • Karsch FJ, Dahl GE, Evans NP, Manning JM, Mayfield KP, Moenter SM, Foster DL. (1993). Seasonal changes in gonadotropin-releasing hormone secretion in the ewe: alteration in response to the negative feedback action of estradiol. Biol. Reprod. 49:1377–1383.
  • Khalil MH, Silverman AJ, Silver R. (2003). Mast cells in the rat brain synthesize gonadotropin-releasing hormone. J. Neurobiol. 56:113–124.
  • Kornack DR, Rakic P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. U. S. A. 96:5768–5773.
  • Lavenex P, Steele MA, Jacobs LF. (2000). The seasonal pattern of cell proliferation and neuron number in the dentate gyrus of wild adult eastern grey squirrels. Eur. J. Neurosci. 12:643–648.
  • Lawson LJ, Perry VH, Dri P, Gordon S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170.
  • Lazar G, Pal E. (1996). Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog's brain and spinal cord. Glia 16:101–107.
  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S. (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15:700–702.
  • Lincoln GA, Johnston JD, Andersson H, Wagner G, Hazlerigg DG. (2005). Photorefractoriness in mammals: dissociating a seasonal timer from the circadian based photoperiod response. Endocrinology 146:3782–3790.
  • Lincoln GA. (2002). Neuroendocrine regulation of seasonal gonadotrophin and prolactin rhythms: lessons from the Soay ram model. Reprod. Suppl. 59:131–147.
  • Lincoln GA, Clarke IJ, Hut RA, Hazlerigg DG. (2006). Characterizing a mammalian circannual pacemaker. Science 314:1941–1944.
  • Lopez-Juarez A, Remaud S, Hassani Z, Jolivet P, Pierre Simons J, Sontag T, Yoshikawa K, Price J, Morvan-Dubois G, Demeneix BA. (2012). Thyroid hormone signaling acts as a neurogenic switch by repressing sox2 in the adult neural stem cell niche. Cell Stem Cell 10:531–543.
  • Lu J, Kaur C, Ling EA. (1996). An immunohistochemical study of the intraventricular macrophages in induced hydrocephalus in prenatal rats following a maternal injection of 6-aminonicotinamide. J. Anat. 188 (Pt 2):491–495
  • Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. (2004). Microglia promote the death of developing Purkinje cells. Neuron 41:535–547.
  • Matsumoto I, Inoue Y, Shimada T, Aikawa T. (2001). Brain mast cells act as an immune gate to the hypothalamic-pituitary-adrenal axis in dogs. J. Exp. Med. 194:71–78.
  • Migaud M, Batailler M, Segura S, Duittoz A, Pillon D, Franceschini I, Pillon D. (2010). Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur. J. Neurosci. 32:2042–2052.
  • Migaud M, Batailler M, Pillon D, Franceschini I, Malpaux B. (2011). Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J. Biol. Rhythms 26:486–496.
  • Ming GL, Song H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28:223–250.
  • Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T. (2008). Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322.
  • Nosjean O, Ferro M, Coge F, Beauverger P, Henlin J-M, Lefoulon F, Fauchere J-L, Delagrange P, Canet E, Boutin JA. (2000). Identification of the melatonin binding site MT3 as the quinone reductase 2. J. Biol. Chem. 275:31311–31317.
  • Nottebohm F. (1981). A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370.
  • Novak CM, Krainak KM, Nunez AA. (1994). Photoperiod and age modulate the number of GnRH immuno-postitive non-neuronal cells in the hamster brain. Soc. Neurosci. 20:161.
  • Ormerod BK, Galea LA. (2003). Reproductive status influences the survival of new cells in the dentate gyrus of adult male meadow voles. Neurosci. Lett. 346:25–28.
  • Perrot-Sinal TS, Kavaliers M, Ossenkopp KP. (1998). Spatial learning and hippocampal volume in male deer mice: relations to age, testosterone and adrenal gland weight. Neuroscience 86:1089–1099.
  • Portaluppi F, Smolenski MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Pyter LM, Reader BF, Nelson RJ. (2005). Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus). J. Neurosci. 25:4521–4526.
  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P. (2005). Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int. Rev. Cytol. 247:89–164.
  • Sano Y, Murabe Y. (1980). Morphological and functional peculiarities of mesenchymal cells in the pars tuberalis of the pituitary gland. Cell Tissue Res. 206:171–180.
  • Silver R, Silverman AJ, Vitkovic L, Lederhendler II. (1996). Mast cells in the brain: evidence and functional significance. Trends Neurosci. 19:25–31.
  • Thompson CK, Brenowitz EA. (2009). Neurogenesis in an adult avian song nucleus is reduced by decreasing caspase-mediated apoptosis. J. Neurosci. 29:4586–4591.
  • Vallieres L, Sawchenko PE. (2003). Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J. Neurosci. 23:5197–5207.
  • von Bohlen und Halbach O. (2011). Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 345:1–19.
  • Wilhelm M, Silver R, Silverman AJ. (2005). Central nervous system neurons acquire mast cell products via transgranulation. Eur. J. Neurosci. 22:2238–2248.
  • Wingren U, Enerback L. (1983). Mucosal mast cells of the rat intestine: a re-evaluation of fixation and staining properties, with special reference to protein blocking and solubility of the granular glycosaminoglycan. Histochem. J. 15:571–582.
  • Workman JL, Bowers SL, Nelson RJ. (2009). Enrichment and photoperiod interact to affect spatial learning and hippocampal dendritic morphology in white-footed mice (Peromyscus leucopus). Eur. J. Neurosci. 29:161–170.
  • Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C. (2005). Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp. Neurol. 192:251–264.
  • Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. (2006). T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res. 324:175–179.
  • Yaskin VA. (1984). Seasonal changes in brain morphology in small mammals. In Merritt JF (ed.). Winter ecology of small mammals. Pittsburgh: Carnegie Museum of Natural History, 183–191.
  • Zhuang X, Silverman AJ, Silver R. (1997). Mast cell number and maturation in the central nervous system: influence of tissue type, location and exposure to steroid hormones. Neuroscience 80:1237–1245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.