Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
209
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Association Between Phase Shifts, Expression Levels, and Amplitudes in Peripheral Circadian Clocks

, , &
Pages 618-627 | Received 02 Sep 2012, Accepted 03 Nov 2012, Published online: 27 Feb 2013

REFERENCES

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328.
  • Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Froy O. (2012). Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim. Biophys. Acta 1822:1796–1806.
  • Barnea M, Madar Z, Froy O. (2009). High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150:161–168.
  • Barnea M, Madar Z, Froy O. (2010). High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 18:230–238.
  • Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A. (2007). Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput. Biol. 3:e68.
  • Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V. (2006). Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol. 20:1715–1727.
  • Challet E, Poirel VJ, Malan A, Pevet P. (2003). Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. J. Neurosci. Res. 72:629–637.
  • Chen R, Seo DO, Bell E, von Gall C, Lee C. (2008). Strong resetting of the mammalian clock by constant light followed by constant darkness. J. Neurosci. 28:11839–11847.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Davidson AJ. (2006). Search for the feeding-entrainable circadian oscillator: a complex proposition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1524–R1526.
  • Eide EJ, Kang H, Crapo S, Gallego M, Virshup DM. (2005). Casein kinase I in the mammalian circadian clock. Methods Enzymol. 393:408–418.
  • Froy O. (2010). Metabolism and circadian rhythms—implications for obesity. Endocr. Rev. 31:1–24.
  • Froy O, Chapnik N, Miskin R. (2006). Long-lived alphaMUPA transgenic mice exhibit pronounced circadian rhythms. Am. J. Physiol. Endocrinol. Metab. 291:E1017–E1024.
  • Froy O, Chapnik N, Miskin R. (2008). The suprachiasmatic nuclei are involved in determining circadian rhythms during restricted feeding. Neuroscience 155:1152–1159.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Hofman MA, Swaab DF. (2006). Living by the clock: the circadian pacemaker in older people. Ageing Res. Rev. 5:33–51.
  • Hurd MW, Ralph MR. (1998). The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 13:430–436.
  • Jewett ME, Kronauer RE, Czeisler CA. (1991). Light-induced suppression of endogenous circadian amplitude in humans. Nature 350:59–62.
  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867.
  • Liu C, Li S, Liu T, Borjigin J, Lin JD. (2007). Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481.
  • Lucas RJ, Freedman MS, Lupi D, Munoz M, David-Gray ZK, Foster RG. (2001). Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice. Behav. Brain Res. 125:97–102.
  • McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA. (2001). Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889.
  • Motosugi Y, Ando H, Ushijima K, Maekawa T, Ishikawa E, Kumazaki M, Fujimura A. (2011). Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats. Chronobiol. Int. 28:968–972.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340.
  • Oishi K, Shirai H, Ishida N. (2005). CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem. J. 386:575–581.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260.
  • Pulivarthy SR, Tanaka N, Welsh DK, De Haro L, Verma IM, Panda S. (2007). Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc. Natl. Acad. Sci. U. S. A. 104:20356–20361.
  • Reppert SM, Weaver DR. (2001). Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63:647–676.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. (2004). A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537.
  • Sherman H, Froy O. (2008). Expression of human beta-defensin 1 is regulated via c-Myc and the biological clock. Mol. Immunol. 45:3163–3167.
  • Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J, le Coutre J, Froy O. (2011a). Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J. Cell. Mol. Med. 15:2745–2759.
  • Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O. (2011b). Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int. J. Biochem. Cell Biol. 43:829–838.
  • Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. (2012a). Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J. 26:3493–3502.
  • Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O. (2012b). All-trans retinoic acid modifies the expression of clock and disease marker genes. J. Nutr. Biochem. 23:209–217.
  • Shimomura K, Menaker M. (1994). Light-induced phase shifts in tau mutant hamsters. J. Biol. Rhythms 9:97–110.
  • Shirai H, Oishi K, Ishida N. (2006). Bidirectional CLOCK/BMAL1-dependent circadian gene regulation by retinoic acid in vitro. Biochem. Biophys. Res. Commun. 351:387–391.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S and others. (2002). A transcription factor response element for gene expression during circadian night. Nature 418:534–539.
  • Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. (2007). Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282:20794–20798.
  • Vitaterna MH, Ko CH, Chang AM, Buhr ED, Fruechte EM, Schook A, Antoch MP, Turek FW, Takahashi JS.(2006). The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proc. Natl. Acad. Sci. U. S. A. 103:9327–9332.
  • Yaffe D, Saxel O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727.
  • Yan L, Silver R. (2002). Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 16:1531–1540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.