Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
1,344
Views
78
CrossRef citations to date
0
Altmetric
Review

On the Adaptive Significance of Circadian Clocks for Their Owners

&
Pages 413-433 | Received 23 Sep 2012, Accepted 25 Nov 2012, Published online: 04 Mar 2013

REFERENCES

  • Allada R, Chung BY. (2010). Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72:605–624.
  • Allemand R, Cohet Y, David J. (1973). Increase in the longevity of adult Drosophila melanogaster kept in permanent darkness. Exp. Gerontol. 8:279–283.
  • Amundson R. (1996). Historical development of the concept of adaptation. In Rose M, Lauder GV (eds.). Adaptation. San Diego: Academic Press, 11–54.
  • Aschoff J. (1964). Survival value of diurnal rhythms. Symp. Zool. Soc. Lond. 13:79–98.
  • Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. (2002). Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 99:2134–2139.
  • Beaver LM, Rush BL, Gvakharia BO, Giebultowicz JM. (2003). Non-circadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J. Biol. Rhythms 18:463–472.
  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544–556.
  • Bennett AF. (2003). Experimental evolution and the Krogh principle: generating biological novelty for functional and genetic analyses. Physiol. Biochem. Zool. 76:1–11.
  • Biswas J, Pati AK, Pradhan RK. (1990). Circadian and circannual rhythms in air gulping behaviour of cave fish. J. Interdiscipl. Cycle Res. 21:257–268.
  • Blume J, Bünning E, Gunzler E. (1962). Zur aktivitätsperiodik bei höhlentieren. Naturwissenschaften 49:525.
  • Bollig I, Chandrashekaran MK, Engelman W, Johnsson A. (1976). Photoperiodism in Chenopodium rubrum: an explicit version of the Bünning hypothesis. Int. J. Chronobiol. 4:83–96.
  • Bradshaw WE, Quebodeaux MC, Holzapfel CM. (2003). Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment? Am. Nat. 161:735–748.
  • Bruce VG. (1960). Environmental entrainment of circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:29–48.
  • Bünning E. (1936). Die endonome tagesrhythmik als grundlage der photoperiodischen reaktion. Ber. Dtsch. Bot. Ges. 64:590–607.
  • Bünning E. (1958). Das weiterlaufen der “physiologischen uhr” im saugerdarm ohne zentrale steuerung. Naturwissenschaften 45:68.
  • Bünning E. (1973). Endodiurnal oscillations as the principle of many physiological time-measuring processes. In Bünning E (ed.). The physiological clock. 3rd edn. Berlin: Springer Verlag, pp. 7–33.
  • Clayton DL, Paietta JV. (1972). Selection for circadian eclosion time in Drosophila melanogaster. Science 178:994–995.
  • Cloudsley-Thompson JL. (1960). Adaptive functions of circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:345–355.
  • Costa R, Peixoto AA, Barbujani G, Kyriacou CP. (1992). A latitudinal cline in a Drosophila clock gene. Proc. R. Soc. B 250:43–49.
  • Daan S. (2009). A history of chronobiological concepts. In Albrecht U (ed.). The circadian clock. Berlin: Springer, pp. 1–35.
  • Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B, Rienks F, Poletaeva I, Dell'Omo G, Vyssotski A, Lipp HP. (2011). Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26:118–129.
  • Darwin C. (1859). Natural selection. In Darwin C (ed.). On the origin of species. London: J. Murray, pp. 80–130.
  • Darwin C, Darwin F. (1880). Modified circumnutations: sleep of nyctitropic movements, their use : sleep of cotyledons. In Darwin C, Darwin F (eds.). The power of movement in plants. London: J. Murray, pp. 280–316.
  • DeCoursey PJ, Krulas JR, Mele G, Holley DC. (1997). Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol. Behav. 62:1099–1108.
  • DeCoursey PJ, Krulas JR. (1998). Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J. Biol. Rhythms 13:229–244.
  • DeCoursey PJ, Walker JK, Smith SA. (2000). A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A 186:169–180.
  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633.
  • DeCoursey PJ. (2004). The behavioural ecology and evolution of biological timing systems. In Dunlap JC, Loros JJ, DeCoursey PJ (eds.). Chronobiology: Biological timekeeping. Sunderland, Massachusetts: Sinauer Associates, Inc, pp. 27–65
  • Emerson KJ, Bradshaw WE, Holzapfel CM. (2008). Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62:979–983.
  • Enderle W. (1951). Tagesperiodische wachstumsund turgorschwankungen in gewebekulturen. Planta (Berlin) 39:530–588.
  • Endler J. (1986). Methods for the detection of natural selection wild. In Endler J (ed.). Natural selection in the wild. Princeton, NJ: Princeton University Press, 52–97.
  • Endler J. (1995). Multiple trait coevolution and environmental gradients in guppies. Trends Ecol. Evol. 10:22–29.
  • Falconer DS, Mackay TFC. (1996). Variance. In Falconer DS, Mackay TFC (eds.). Introduction to quantitative genetics. Harlow, UK: Prentice Hall, pp. 122–144.
  • Fleury F, Allemand R, Vavre F, Fouillet P, Boulétreau M. (2000). Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc. R. Soc. B 267:1005–1010.
  • Futuyama DJ, Bennett AF. (2009). The importance of experimental studies in evolutionary biology. In Garland T Jr, Rose M (eds.). Experimental evolution. Berkeley, CA: University of California Press, pp. 15–30.
  • Halberg F. (1959). Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In Withrow RB (ed.). Photoperiodism and related phenomena in plants and animals. Washington, DC: AAAS, pp. 803–878.
  • Halberg F. (1960). Temporal coordination of physiologic function. Cold Spring Harb. Symp. Quant. Biol. 25:289–308.
  • Harker JE. (1956). Factors controlling the diurnal rhythm of activity of Periplaneta americana L. J. Exp. Biol. 33:224–234.
  • Harker JE. (1958). Experimental production of midgut tumors in Periplaneta americana L. J. Exp. Biol. 35:251–259.
  • Highkin HR, Hanson JB. (1954). Possible interaction between light-dark cycles and endogenous daily rhythms on the growth of tomato plants. Plant Physiol. 29:301–302.
  • Hillman WS. (1956). Injury of tomato plants by continuous light and unfavourable photoperiodic cycles. Am. J. Bot. 43:89–96.
  • Hoffmann K. (1953). Die einrechnung der sonnenwanderung bei der richtungsweisung des sonnenlos aufgezogenen stares. Naturwissenschaften 40:148–148.
  • Hoffmann K. (1954). Versuche zu der im richtungsfinden der vogel enthaltenen zeitschatzung. Z. Tierpsychol. 11:453–475.
  • Hunt J, Hodgson D. (2010). What is fitness, and how do we measure it? In Westneat DF, Fox CW (eds.). Evolutionary behavioral ecology. New York: Oxford University Press, pp. 46–70.
  • Hurd MW, Ralph MR. (1998). The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 13:430–436.
  • Hut RA, Beersma DG. (2011). Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. B 366:2141–2154.
  • Imafuku M, Haramura T. (2011). Activity rhythm of Drosophila kept in complete darkness for 1300 generations. Zool. Sci. 28:195–198.
  • Irschick DJ, Reznick DR. (2009). Field experiments, introductions, and experimental evolution. In Garland T Jr, Rose M (eds.). Experimental evolution. Berkeley, CA: University of California Press, pp. 173–193.
  • Johnson CH. (2005). Testing the adaptive value of circadian systems. Methods Enzymol. 393:818–837.
  • Johnson CH, Elliott JA, Foster R. (2003). Entrainment of circadian programs. Chronobiol. Int. 20:741–774.
  • Kannan NN, Vaze KM, Sharma VK. (2012a). Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster. J. Exp. Biol. 215:3527–3534.
  • Kannan NN, Mukherjee N, Sharma VK. (2012b). Robustness of circadian timing systems evolves in fruit flies Drosophila melanogaster as a correlated response to selection for adult emergence in a narrow window of time. Chronobiol. Int. 29:1312–1328.
  • Klarsfeld A, Rouyer F. (1998). Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms 13:471–478.
  • Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. (2000). Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol. Int. 17:757–765.
  • Kramer G. (1950). Weitere analyse der faktoren, welche die zugaktivitat des gekafigten vogels orientieren. Naturwissenschaften 37:377–378.
  • Kumar S, Mohan A, Sharma VK. (2005). Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol. Int. 22:641–53.
  • Kumar S, Kumar D, Harish VS, Divya S, Sharma VK. (2007a). Possible evidence for morning and evening oscillators in Drosophila melanogaster populations selected for early and late adult emergence. J. Insect Physiol. 53:332–342.
  • Kumar S, Kumar D, Paranjpe DA, Akarsh CR, Sharma VK. (2007b). Selection on the timing of adult emergence results in altered circadian clocks in fruit flies Drosophila melanogaster. J. Exp. Biol. 210:906–918.
  • Kyriacou CP, Peixoto AA, Sandrelli F, Costa R, Tauber E. (2008). Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet. 24:124–132.
  • Lankinen P. (1986). Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A 159:123–142.
  • Lankinen P. (1993). North-south differences in circadian eclosion rhythm in European populations of Drosophila subobscura. Heridity 71:210–218.
  • Larson A, Losos JB. (1996). Phylogenetic systematics of adaptation. In Rose M, Lauder GV (eds.). Adaptation. San Diego: Academic Press, pp. 187–220.
  • Lone SR, Ilangovan V, Murugan M, Sharma VK. (2010). Circadian resonance in the development of two sympatric species of Camponotus ants. J. Insect Physiol. 56:1611–1616.
  • Menaker M, Vogelbaum MA. (1993). Mutant circadian period as a marker of suprachiasmatic nucleus function. J Biol. Rhythms 8:S93–S98.
  • Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053.
  • Miyatake T. (1997). Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms. Behav. Genet. 27:489–498.
  • Miyatake T. (2002). Circadian rhythm and time of mating in Bactrocera cucurbitae (Diptera: Tephritidae) selected for age at reproduction. Heredity 88:302–306.
  • Miyatake T, Matsumoto A, Matsuyama T, Ueda HR, Toyosato T, Tanimura T. (2002). The period gene and allochronic reproductive isolation in Bactrocera cucurbitae. Proc. R. Soc. B 269:2467–2472.
  • O'Donnell AJ, Schneider P, McWatters HG, Reece SE. (2011). Fitness costs of disrupting circadian rhythms in malaria parasites. Proc. R. Soc. B 278:2429–2436.
  • Osiel S, Golombek DA, Ralph MR. (1998). Conservation of locomotor behavior in the golden hamster: effects of light cycle and a circadian period mutation. Physiol. Behav. 65:123–131.
  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 95:8660–8664.
  • Paranjpe DA, Sharma VK. (2005). Evolution of temporal order in living organisms. J. Circadian Rhythms 3:7–20.
  • Paranjpe DA, Anitha D, Chandrashekaran MK, Joshi A, Sharma VK. (2005). Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster. BMC Dev. Biol. 5:5.
  • Pavlidis T. (1973). Biological Phenomena attributable to populations of oscillators. In Pavlidis T (ed.). Biological oscillators: their mathematical analysis. New York: Academic Press, pp. 159–186.
  • Pekkala N, Kotiaho JS, Puurtinen M. (2011). Laboratory relationships between adult lifetime reproductive success and fitness surrogates in a Drosophila littoralis population. PLoS ONE 6:e24560.
  • Pittendrigh CS. (1954). On temperature independence in the clock-system controlling emergence time in Drosophila. Proc. Nat. Acad. Sci. U. S. A. 40:1018–1029.
  • Pittendrigh CS. (1958). Adaptation, natural selection and behavior. In Roe A, Simpson G (eds.). Behavior and evolution. Yale University Press, 390–416.
  • Pittendrigh CS. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25:159–184.
  • Pittendrigh CS. (1961). On temporal organization in living systems. Harvey Lect. 56:93–125.
  • Pittendrigh CS. (1966). The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z. Pflanzenphysiol. 54:275–307.
  • Pittendrigh CS. (1967). Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. U. S. A. 58:1762–1767.
  • Pittendrigh CS. (1972). Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc. Natl. Acad. Sci. U. S. A. 69:2734–2737.
  • Pittendrigh CS, Minis DH. (1971). The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. In Menaker M (ed.). Biochronometry. Washington, DC: National Academy of Sciences, pp. 212–250.
  • Pittendrigh CS, Minis DH. (1972). Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 69:1537–1539.
  • Pittendrigh CS, Takamura T. (1989). Latitudinal clines in the properties of a circadian pacemaker. J. Biol. Rhythms 4:217–235.
  • Pittendrigh CS, Elliot T, Takamura T. (1984). The circadian component in photoperiodic induction. CIBA Found. Symp. 104:26–47
  • Portaluppi F, Smolensky M, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Poulson TL, White WB. (1969). The cave environment. Science 165:971–981.
  • Prasad NG, Joshi A. (2003). What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J. Genet. 82:45–76.
  • Prout T. (1971). The relation between fitness components and population prediction in Drosophila. II: population prediction. Genetics 68:151–167.
  • Ralph MR, Menaker M. (1988). A mutation of the circadian system in golden hamsters. Science 241:1225–1227.
  • Rensing L, Meyer-Grahle U, Ruoff P. (2002). Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol. Int. 18:329–369.
  • Reznick DN, Travis J. (1996). The empirical study of adaptation in natural populations. In Rose M, Lauder GV (eds.). Adaptation. San Diego: Academic Press, pp. 243–290.
  • Rosato E, Peixoto AA, Barbujani G, Costa R, Kyriacou CP. (1994). Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138:693–707.
  • Rosato E, Peixoto AA, Costa R, Kyriacou CP. (1997). Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period, in Drosophila melanogaster. Genet. Res. 69:89–99.
  • Rosbash M. (2009). The implications of multiple circadian clock origins. PLoS Biol. 7:e1000062.
  • Rose MR, Nusbaum TJ, Mueller LD. (1996). Laboratory evolution: the experimental wonderland and the Chesire cat syndrome. In Rose M, Lauder GV (eds.). Adaptation. San Diego: Academic Press, 221–241.
  • Ruby NF, Dark J, Heller HC, Zucker I. (1996). Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Proc. Natl. Acad. Sci. U. S. A. 93:9864–9868.
  • Saunders DS. (1972). Circadian control of larval growth rate in Sarcophaga argyrostoma. Proc. Natl. Acad. Sci. U. S. A. 69:2738–2740.
  • Saunders DS. (2002). Circadian rhythms of activity in populations of insects. In Steel CGH, Vafopoulou X, Lewis RD (eds.). Insect clocks. 3rd edn, Amsterdam: Elsevier, pp. 43–102.
  • Sawyer LA, Hennessy JM, Peixoto AA, Rosato E, Parkinson H, Costa R, Kyriacou CP. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science 278:2117–2120.
  • Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R, Kyriacou CP. (2006). The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: implications for selection. Genetics 174:465–480.
  • Sharma VK. (2003). Adaptive significance of circadian clocks. Chronobiol. Int. 20:901–919.
  • Sharma VK, Joshi AJ. (2002). Clocks, genes and evolution: the evolution of circadian organization. In Kumar V (ed.). Biological rhythms. New Delhi, India: Narosa Publishing House, 5–23.
  • Sheeba V, Sharma VK, Chandrashekaran MK, Joshi A. (1999). Persistence of eclosion rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 86:448–449.
  • Sheeba V, Sharma VK, Shubha K, Chandrashekaran MK, Joshi A. (2000). The effect of different light regimes on adult lifespan in Drosophila melanogaster is partly mediated through reproductive output. J. Biol. Rhythms 15:380–392.
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. (2001). Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. J. Exp. Zool. 290:541–549.
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. (2002). Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 89:512–514.
  • Shimizu T, Miyatake T, Watari Y, Arai T. (1997). A gene pleiotropically controlling developmental and circadian periods in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Heredity 70:600–605.
  • Sinervo B, Basolo AL. (1996). Testing adaptation using phenotypic manipulations. In Rose M, Lauder GV (eds.). Adaptation. San Diego: Academic Press, pp. 149–186.
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Nat. Acad. Sci. U. S. A. 69:1583–1586.
  • Tauber E, Zordan M, Sandrelli F, Pegoraro M, Osterwalder N, Breda C, Daga A, Selmin A, Monger K, Benna C, Rosato E, Kyriacou CP, Costa R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:1895–1898.
  • Trajano E, Menna-Barreto L. (1995). Locomotor activity pattern of Brazilian cave catfishes under constant darkness (Siluriformes, Pimelodidae). Biol. Rhythm Res. 26:341–353.
  • Trajano E, Menna-Barreto L. (1996). Free-running locomotor activity rhythms in cave-dwelling catfishes, Trichomycterus sp., from Brazil (Teleostei, Siluriformes). Biol. Rhythm Res. 27:329–335.
  • Veerman A, Vaz Nunes M. (1980). Circadian rhythmicity participates in the photoperiodic determination of diapause in spider mites. Nature 287:140–141.
  • Vaz Nunes M, Veerman A. (1982). Photoperiodic time measurement in the spider mite, Tetranychus urticae: a novel concept. J. Insect Physiol. 28:1041–1053.
  • Vaz Nunes M, Saunders D. (1999). Photoperiodic time measurement in insects: a review of clock models. J. Biol. Rhythms 14:84–104.
  • Vaze KM, Nikhil KL, Abhilash L, Sharma VK. (2012). Early- and late-emerging Drosophila melanogaster fruit flies differ in their sensitivity to light during morning and evening. Chronobiol. Int. 29:674–682.
  • von Frisch K. (1950). Die sonne als kompaß im leben der bienen. Experientia 6:210–221.
  • von Saint Paul U, Aschoff J. (1978). Longevity among blowflies Phormia terranovae R. D. kept in non-24 hour light-dark cycles. J. Comp. Physiol. A 127:191–195.
  • Weeks AR, McKechnie SW, Hoffmann AA. (2006). In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations. J. Evol. Biol. 19:551–557.
  • Went FW. (1960). Photo- and thermo-periodic effects in plant growth. Cold Spring Harb. Symp. Quant. Biol. 25:221–230.
  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. (2004). The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. 14:1481–1486.
  • Wade MJ. (2000). Epistasis as a genetic constraint within populations and an accelerant of adaptive divergence among them. In Wolf JB, Brodie III ED, Wade MJ (eds.). Epistasis and the evolutionary processs. New York: Oxford University Press, pp. 213–231.
  • Wyse CA, Coogan AN, Selman C, Hazlerigg DG, Speakman JR. (2010). Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited. Biol. Lett. 6:696–698.
  • Yerushalmi S, Green RM. (2009). Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12:970–981.
  • Yerushalmi S, Yakir E, Green RM. (2011). Circadian clocks and adaptation in Arabidopsis. Mol. Ecol. 20:1155–1165.
  • Young MW, Kay SA. (2001). Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702–715.
  • Yu W, Hardin PE. (2006). Circadian oscillators of Drosophila and mammals. J. Cell Sci. 119:4793–4795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.