Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 32, 2015 - Issue 1
341
Views
9
CrossRef citations to date
0
Altmetric
Original Article

D1 Dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision

, &
Pages 48-58 | Received 21 Feb 2014, Accepted 30 Jul 2014, Published online: 26 Aug 2014

References

  • Barnard AR, Hattar S, Hankins MW, Lucas RJ. (2006). Melanopsin regulates visual processing in the mouse retina. Curr Biol. 16:389–95
  • Berson DM. (2003). Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26:314–20
  • Bui BV, Fortune B. (2004). Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 555:153–73
  • Bui BV, Fortune B. (2006). Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci. 23:155–67
  • Cameron MA, Barnard AR, Hut RA, et al. (2008a). Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J Biol Rhythms. 23:489–501
  • Cameron MA, Barnard AR, Lucas RJ. (2008b). The electroretinogram as a method for studying circadian rhythms in the mammalian retina. J Genet. 87:459–66
  • Cameron MA, Pozdeyev N, Vugler AA, et al. (2009). Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci. 29:761–7
  • Catterall WA. (2012). Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J Physiol. 590:2577–89
  • Dkhissi-Benyahya O, Coutanson C, Knoblauch K, et al. (2013). The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci. 70:3435–47
  • Dong CJ, McReynolds JS. (1992). Comparison of the effects of flickering and steady light on dopamine release and horizontal cell coupling in the mudpuppy retina. J Neurophys. 67:364–72
  • Dorenbos R, Contini M, Hirasawa H, et al. (2007). Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci. 24:573–80
  • Doyle SE, Grace MS, McIvor W, Menaker M. (2002a). Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci. 19:593–601
  • Doyle SE, McIvor WE, Menaker M. (2002b). Circadian rhythmicity in dopamine content of mammalian retina: Role of the photoreceptors. J Neurochem. 83:211–19
  • Freed MA. (2000). Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. J Neurophys. 83:2956–66
  • Frishman LJ. (2006). Origins of the electroretinogram. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. 2nd ed. Cambridge, MA: The MIT Press, pp. 139–83
  • Gustincich S, Contini M, Gariboldi M, et al. (2004). Gene discovery in genetically labeled single dopaminergic neurons of the retina. Proc Natl Acad Sci USA. 101:5069–74
  • Herrmann R, Heflin SJ, Hammond T, et al. (2011). Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron. 72:101–10
  • Huppé-Gourgues F, Coudé G, Lachapelle P, Casanova C. (2005). Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram. Vis Res. 45:137–45
  • Ichinose T, Lukasiewicz PD. (2007). Ambient light regulates sodium channel activity to dynamically control retinal signaling. J Neurosci. 27:4756–64
  • Ichinose T, Shields CR, Lukasiewicz PD. (2005). Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. J Neurosci. 25:1856–65
  • Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH. (1978). Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science. 202:901–2
  • Jackson CR, Ruan G-X, Aseem F, et al. (2012). Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci. 32:9359–68
  • Jeon CJ, Strettoi E, Masland RH. (1998). The major cell populations of the mouse retina. J Neurosci. 18:8936–46
  • Kaplan HJ, Chiang C, Chen J, Song S. (2010). Vitreous volume of the mouse measured by quantitative high-resolution MRI. Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO). Fort-Lauderdale. E-Abstract No. 4414
  • Lavoie J, Hébert M, Beaulieu J-M. (2013). Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice. Behav Brain Res. 253:262–5
  • Lavoie J, Illiano P, Sotnikova TD, et al. (2014). The electroretinogram as a biomarker of central dopamine and serotonin: Potential relevance to psychiatric disorders. Biol Psychiatry. 75:479–86
  • Lei B, Yao G, Zhang K, Hofeldt KJ, Chang B. (2006). Study of rod- and cone-driven oscillatory potentials in mice. IOVS. 47:2732–8
  • Li H, Zhang Z, Blackburn MR, et al. (2013). Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci. 33:3135–50
  • Liu X, Zhang Z, Ribelayga CP. (2012). Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One. 7:e50602
  • Ma Y-P, Cui J, Pan Z-H. (2005). Heterogeneous expression of voltage-dependent Na+ and K+ channels in mammalian retinal bipolar cells. Vis Neurosci. 22:119–33
  • Manglapus MK, Uchiyama H, Buelow NF, Barlow RB. (1998). Circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci. 18:4775–84
  • Mills SL, Mills SL, Xia X-B, et al. (2007). Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Vis Neurosci. 24:593–608
  • Miura G, Wang MH, Ivers KM, Frishman LJ. (2009). Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res. 89:49–62
  • Mojumder DK, Frishman LJ, Otteson DC, Sherry DM. (2007). Voltage-gated sodium channel alpha-subunits Na(v)1.1, Na(v)1.2, and Na(v)1.6 in the distal mammalian retina. Mol Vis. 13:2163–82
  • Mojumder DK, Sherry DM, Frishman LJ. (2008). Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol. 586:2551–80
  • Nir I, Haque R, Iuvone PM. (2000). Diurnal metabolism of dopamine in the mouse retina. Brain Res. 870:118–25
  • Pan ZH, Hu HJ. (2000). Voltage-dependent Na(+) currents in mammalian retinal cone bipolar cells. J Neurophys. 84:2564–71
  • Peachey NS, Goto Y, al-Ubaidi MR, Naash MI. (1993). Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosci Lett. 162:9–11
  • Popova E, Kupenova P. (2011). Effects of dopamine D(1) receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation. Vis Res. 51:1627–36
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–29
  • Pozdeyev N, Tosini G, Li L, et al. (2008). Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci. 27:2691–700
  • Ribelayga C, Mangel SC. (2003). Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol. 467:243–53
  • Roseboom PH, Namboodiri MA, Zimonjic DB, et al. (1998). Natural melatonin “knockdown” in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Mol Brain Res. 63:189–97
  • Ruan G-X, Allen GC, Yamazaki S, McMahon DG. (2008). An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 6:e249
  • Ruan G-X, Zhang D-Q, Zhou T, et al. (2006). Circadian organization of the mammalian retina. Proc Natl Acad Sci USA. 103:9703–8
  • Saszik S, DeVries SH. (2012). A mammalian retinal bipolar cell uses both graded changes in membrane voltage and all-or-nothing Na+ spikes to encode light. J Neurosci. 32:297–307
  • Sengupta A, Baba K, Mazzoni F, et al. (2011). Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS One. 6:e24483
  • Smith BJ, Côté PD. (2012). Reduced retinal function in the absence of Na(v)1.6. PLoS One. 7:e31476
  • Smith BJ, Tremblay F, Côté PD. (2013). Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res. 116:279–90
  • Storch K-F, Paz C, Signorovitch J, et al. (2007). Intrinsic circadian clock of the mammalian retina: Importance for retinal processing of visual information. Cell. 130:730–41
  • Tassi P, Pins D. (1997). Diurnal rhythmicity for visual sensitivity in humans? Chronobiol Int. 14:35–48
  • Tosini G, Menaker M. (1996). Circadian rhythms in cultured mammalian retina. Science. 272:419–21
  • Vugler AA, Redgrave P, Hewson-Stoate NJ, et al. (2007). Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat. 33:9–22
  • Witkovsky P, Veisenberger E, LeSauter J, et al. (2003). Cellular location and circadian rhythm of expression of the biological clock gene period 1 in the mouse retina. J Neurosci. 23:7670–6
  • Zenisek D, Henry D, Studholme K, et al. (2001). Voltage-dependent sodium channels are expressed in nonspiking retinal bipolar neurons. J Neurosci. 21:4543–50
  • Zhang D-Q, Belenky MA, Sollars PJ, et al. (2012). Melanopsin mediates retrograde visual signaling in the retina. PLoS One. 7:e42647

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.