Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 32, 2015 - Issue 10
274
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability

, , , , , & show all
Pages 1391-1408 | Received 30 Jun 2015, Accepted 23 Sep 2015, Published online: 20 Nov 2015

References

  • Akhtar RA, Reddy AB, Maywood ES, et al. (2002). Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 12:540–50
  • Aranda A, Madrid JA, Sánchez-Vázquez FJ. (2001). Influence of light on feeding anticipatory activity in goldfish. J Biol Rhythms. 16:50–7
  • Bailey SM, Udoh US, Young ME. (2014). Circadian regulation of metabolism. J Endocrinol. 222:75–96
  • Bayarri MJ, Muñoz-Cueto JA, López-Olmeda JF, et al. (2004). Daily locomotor activity and melatonin rhythms in Senegal sole (Solea senegalensis). Physiol Behav. 81:577–83
  • Betancor MB, McStay E, Minghetti M, et al. (2014). Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L.). PLoS One. 9:e106739
  • Boujard T, Leatherland JF. (1992b). Circadian rhythm and feeding time in fishes. Environ Biol Fishes. 35:109–31
  • Cailotto C, van Heijningen C, van der Vliet J, et al. (2008). Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology. 149:1914–25
  • Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. (2006). Reciprocal regulation of brain and muscle arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol. 20:1715–27
  • Cermakian N, Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. PNAS. 97:4339–44
  • Chang HC, Guarente L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 25:138–45
  • Damiola F, Le Minh N, Preitner N, et al. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–61
  • De Pedro N, Delgado MJ, Pinillos ML, et al. (1998). Daily rhythms in NAT activity, cortisol, glucose, glycogen, and catecholamines in tench (Tinca tinca (L.). Pol Arch Hydrobiol. 45:321–9
  • De Pedro N, Guijarro AI, López-Patiño MA, et al. (2005). Daily and seasonal variations in haematological and blood biochemical parameters in the tench, Tinca tinca Linnaeus, 1758. Aquac Res. 36:1185–96
  • Desvergne B, Michalik L, Wahli W. (2006). Transcriptional regulation of metabolism. Physiol Rev. 86:465–514
  • Eckel-Mahan K, Sassone-Corsi P. (2013). Metabolism and the circadian clock converge. Physiol Rev. 93:107–35
  • Engeland WC, Arnhold MM. (2005). Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine. 28:325–32
  • Figueroa RI, Rodríguez-Sabarís R, Aldegunde M, Soengas JL. (2000). Effects of food deprivation on 24 h-changes in brain and liver carbohydrate and ketone body metabolism of rainbow trout. J. Fish Biol. 57:631–46
  • Gervois P, Chopin-Delannoy S, Fadel A, et al. (1999). Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol Endocrinol. 13:400–9
  • Gómez-Milán E, Sánchez-Muros Lozano MJ. (2007). Daily and annual variations of the hepatic glucose 6-phosphate dehydrogenase activity and seasonal changes in the body fats of the gilthead seabream Sparus aurata. J Exp Zool A Ecol Genet Physiol. 307:516–26
  • Hara R, Wan KK, Wakamatsu H, et al. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 6:269–78
  • Hardin PE, Panda S. (2013). Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol. 23:724–31
  • Haus E. (2007). Chronobiology in the endocrine system. Adv Drug Deliv Rev. 59:985–1014
  • Huang W, Ramsey KM, Marcheva B, Bass J. (2011). Circadian rhythms, sleep and metabolism. J Clin Invest. 121:2133–41
  • Kirchner S, Seixas P, Kaushik S, Panserat S. (2005). Effects of low protein intake on extra-hepatic gluconeogenic enzyme expression and peripheral glucose phosphorylation in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B. 140:333–40
  • Ko CH, Takahashi JS. (2006). Molecular components of the mammalian circadian clock. Hum Mol Gen. 15:R271–7
  • Kornmann B, Schaad O, Reinke H, et al. (2007). Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harbor Symp Quant Biol. 72:319–30
  • Laidley CW, Leatherland JF. (1988). Circadian studies of plasma cortisol, thyroid hormone, protein, glucose and ion concentration, liver glycogen concentration and liver and spleen weight in rainbow trout, Salmo gairdneri Richardson. Comp Biochem Physiol A 89:495–502
  • Le Martelot G, Claudel T, Gatfield D, et al. (2009). REV-ERB alpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7:e1000181
  • Librán-Pérez M, Polakof S, López-Patiño MA, et al. (2012). Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 302:R1340–50
  • López-Olmeda JF, Blanco-Vives B, Pujante M, et al. (2013). Daily rhythms in the Hypothalamus-Pituitary-Interrenal axis and acute stress responses in a teleost flatfish, Solea senegalensis. Chronobiol Int. 30:530–9
  • López-Olmeda JF, Sánchez-Vázquez FJ. (2010). Feeding rhythms in fish: from behavioral to molecular approach. In Kulczykowska E, Popek W, Kapoor BG, eds. Biological clock in fish. Enfield, USA: Science Publishers, pp. 154–84
  • López-Patiño MA, Rodríguez-Illamola A, Conde-Sieira M, et al. (2011). Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus mykiss. Chronobiol Int. 27:381–9
  • Meijer HJ, Rietveld WJ. (1989). Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev. 69:671–707
  • Nogueiras R, Habegger KM, Chaudhary N, et al. (2012). Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol Rev 92:1479–514
  • Paredes JF, Vera LM, Martínez-López FJ, et al. (2014). Circadian rhythms of gene expression of lipid metabolism in gilthead sea ream liver: Synchronisation to light and feeding time. Chronobiol Int. 5:613–26
  • Pfaffl MW. (2001). A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Res. 29:2002–7
  • Polakof S, Ceinos RM, Fernández-Durán B, et al. (2007a). Daily changes in parameters of energy metabolism in brain of rainbow trout: Dependence on feeding. Comp Biochem Physiol A. 146:265–73
  • Polakof S, Míguez JM, Soengas JL. (2007b). Daily changes in parameters of energy metabolism in liver, white muscle, and gills of rainbow trout: Dependence on feeding. Comp Biochem Physiol A. 147:363–74
  • Polakof S, Míguez JM, Soengas JL. (2008a). Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions. J Comp Physiol A. 194:829–39
  • Polakof S, Míguez JM, Soengas JL. (2008b). Dietary carbohydrates induce changes in glucosensing capacity and food intake in rainbow trout. Am J Physiol Regul Integr Comp Physiol. 295:R478–89
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int 27:1911–29
  • Sage D, Maurel D, Bosler O. (2002). Corticosterone-dependent driving influence of the suprachiasmatic nucleus on adrenal sensitivity to ACTH. Am J Physiol Endocrinol Metab. 282:E458–65
  • Sánchez-Vázquez FJ, Aranda A, Madrid JA. (2001). Differential effects of meal size and food energy density on feeding entrainment in goldfish. J Biol Rhythms. 16:58–65
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, et al. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by feeding-entrainable circadian oscillator. J Comp Physiol A. 181:121–32
  • Sangiao-Alvarellos S, Guzmán JM, Laiz-Carrión R, et al. (2005). Interactive effects of high stocking density and food deprivation on carbohydrate metabolism in several tissues of gilthead sea bream Sparus auratus. J Exp Zool. 303A:761–75
  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. PNAS. 106:4453–8
  • Schibler U. (2009). The 2008 Pittendrigh/Aschoff lecture: Peripheral phase coordination in the mammalian circadian timing system. J Biol Rhythm. 24:3–15
  • Schibler U, Asher G, Saini C, et al. (2010). Hepatic clocks. In Dufour JF, Clavien PA, eds. Signaling pathways in liver diseases. Berlin: Springer-Verlag. pp. 501–12
  • Shimba S, Ogawa T, Hitosugi S, et al. (2011). Deficient of a Clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One. 6:e25231
  • Soengas JL, Polakof S, Chen X, et al. (2006). Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am J Physiol Regul Integr Comp Physiol. 291:R810–21
  • Stokkan KA, Yamazaki S, Tei H, et al. (2001). Entrainment of the circadian clock in the liver by feeding. Science. 291:490–3
  • Vera LM, Negrini P, Zagatti C, et al. (2013). Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol Int. 30:649–61
  • Volkoff H, Hoskins LJ, Tuziak SM. (2010). Influence of intrinsic and environmental cues on the endocrine control of feeding in fish: Potential application in aquaculture. Gen Comp Endocrinol. 167:352–9
  • Vollmers C, Gill S, DiTacchio L, et al. (2009). Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA. 106:21453–8
  • Yang X, Downes M, Yu RT, et al. (2006). Nuclear receptor expression links the circadian clock to metabolism. Cell. 126:801–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.